Journal Home > Volume 11 , Issue 6

Unlike nucleation and growth in simple precipitation processes, described by the classical theory, metal nanoparticles formed in organic solvents with capping ligands often involve chemical reactions that occur homogeneously in solution or heterogeneously on the metal surface. These chemical reactions lead to the formation of intermediates that occurs in the process of deposition onto nuclei during the reduction. The understanding of these chemical reactions would enable a better design of functional metal nanocrystals, even those with unconventional hierarchical morphologies. In this study, we report the formation of dish-shaped nanostructures of palladium (Pd) obtained from palladium acetylacetonate (Pd(acac)2) in the presence of oleylamine and oleic acid. The process was correlated with the kinetic-controlled evolution of two-dimensional (2D) Pd nanosheets. The formation of Pd-ligand complexes was revealed using single-crystal X-ray diffraction, ultraviolet-visible spectroscopy, and mass spectrometry. These intermediates affected the formation kinetics of the 2D nanostructures and higher-ordered morphology of the nanodishes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dish-like higher-ordered palladium nanostructures through metal ion-ligand complexation

Show Author's information Xi Yin1Miao Shi1Kam Sang Kwok1Haidong Zhao1Danielle L. Gray2Jeffery A. Bertke2Hong Yang1 ( )
Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignMC–712206 Roger Adams Laboratory600 S. Matthews AvenueUrbanaIllinois61801USA
George L. Clark X-ray FacilityUniversity of Illinois at Urbana–Champaign505 S. Matthews AvenueUrbanaIllinois61801USA

Abstract

Unlike nucleation and growth in simple precipitation processes, described by the classical theory, metal nanoparticles formed in organic solvents with capping ligands often involve chemical reactions that occur homogeneously in solution or heterogeneously on the metal surface. These chemical reactions lead to the formation of intermediates that occurs in the process of deposition onto nuclei during the reduction. The understanding of these chemical reactions would enable a better design of functional metal nanocrystals, even those with unconventional hierarchical morphologies. In this study, we report the formation of dish-shaped nanostructures of palladium (Pd) obtained from palladium acetylacetonate (Pd(acac)2) in the presence of oleylamine and oleic acid. The process was correlated with the kinetic-controlled evolution of two-dimensional (2D) Pd nanosheets. The formation of Pd-ligand complexes was revealed using single-crystal X-ray diffraction, ultraviolet-visible spectroscopy, and mass spectrometry. These intermediates affected the formation kinetics of the 2D nanostructures and higher-ordered morphology of the nanodishes.

Keywords: two-dimensional materials, palladium, nucleation, nanoplates, complexation, growth

References(68)

1

Balanta, A.; Godard, C.; Claver, C. Pd nanoparticles for C-C coupling reactions. Chem. Soc. Rev. 2011, 40, 4973-4985.

2

Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J. M.; Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev. 2011, 40, 5181-5203.

3

Noh, J. S.; Lee, J. M.; Lee, W. Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection. Sensors 2011, 11, 825-851.

4

Saldan, I.; Semenyuk, Y.; Marchuk, I.; Reshetnyak, O. Chemical synthesis and application of palladium nanoparticles. J. Mater. Sci. 2015, 50, 2337-2354.

5

Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999-12044.

6

Jia, J.; Wang, H.; Lu, Z. L.; O'Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z. Q.; Li, P. C.; Qiao, Q.; Wang, L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.

7

Cheong, S. S.; Watt, J. D.; Tilley, R. D. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2010, 2, 2045-2053.

8

Xiao, L.; Zhuang, L.; Liu, Y.; Lu, J. T.; Abruña, H. D. Activating Pd by morphology tailoring for oxygen reduction. J. Am. Chem. Soc. 2009, 131, 602-608.

9

Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783-1794.

10

Li, Y.; Yan, Y. C.; Li, Y. H.; Zhang, H.; Li, D. S.; Yang, D. R. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm 2015, 17, 1833-1838.

11

Xiong, Y.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385-3391.

12

Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189-200.

13

Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127-2157.

14

Ling, T.; Wang, J. J.; Zhang, H.; Song, S. T.; Zhou, Y. Z.; Zhao, J.; Du, X. W. Freestanding ultrathin metallic nanosheets: Materials, synthesis, and applications. Adv. Mater. 2015, 27, 5396-5402.

15

Pan, Y. T.; Smith, C. E.; Kwok, K. S.; Chen, J. R.; Kong, H.; Yang, H. Functionalized ultrathin palladium nanosheets as patches for HepG2 cancer cells. Chem. Commun. 2015, 51, 14171-14174.

16

Xu, D. D.; Liu, Y.; Zhao, S. L.; Lu, Y.; Han, M.; Bao, J. C. Novel surfactant-directed synthesis of ultra-thin palladium nanosheets as efficient electrocatalysts for glycerol oxidation. Chem. Commun. 2017, 53, 1642-1645.

17

Yazdan-Abad, M. Z.; Noroozifar, M.; Alam, A. R. M.; Saravani, H. Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media. J. Mater. Chem. A 2017, 5, 10244-10249.

18

Pan, Y. T.; Yin, X.; Kwok, K. S.; Yang, H. Higher-order nanostructures of two-dimensional palladium nanosheets for fast hydrogen sensing. Nano Lett. 2014, 14, 5953-5959.

19

Yin, X.; Liu, X. H.; Pan, Y. T.; Walsh, K. A.; Yang, H. Hanoi tower-like multilayered ultrathin palladium nanosheets. Nano Lett. 2014, 14, 7188-7194.

20

Li, Y.; Wang, W. X.; Xia, K. Y.; Zhang, W. J.; Jiang, Y. Y.; Zeng, Y. W.; Zhang, H.; Jin, C. H.; Zhang, Z.; Yang, D. R. Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small 2015, 11, 4745-4752.

21

Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. Y.; Li, Z. Y.; Xia, Y. N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 2005, 127, 17118-17127.

22

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28-32.

23

Nie, L. M.; Chen, M.; Sun, X. L.; Rong, P. F.; Zheng, N. F.; Chen, X. Y. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale 2014, 6, 1271-1276.

24

Dumas, A.; Couvreur, P. Palladium: A future key player in the nanomedical field? Chem. Sci. 2015, 6, 2153-2157.

25

Zhang, Y.; Wang, M. S.; Zhu, E. B.; Zheng, Y. B.; Huang, Y.; Huang, X. Q. Seedless growth of palladium nanocrystals with tunable structures: From tetrahedra to nanosheets. Nano Lett. 2015, 15, 7519-7525.

26

Huang, X. Q.; Tang, S. S.; Yang, J.; Tan, Y. M.; Zheng, N. F. Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133, 15946-15949.

27

Yin, X.; Warren, S. A.; Pan, Y. T.; Tsao, K. C.; Gray, D. L.; Bertke, J.; Yang, H. A motif for infinite metal atom wires. Angew. Chem., Int. Ed. 2014, 53, 14087-14091.

28

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.

29

Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664-670.

30

Liu, H. T.; Owen, J. S.; Alivisatos, A. P. Mechanistic study of precursor evolution in colloidal group Ⅱ-Ⅵ semiconductor nanocrystal synthesis. J. Am. Chem. Soc. 2007, 129, 305-312.

31

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309-1312.

32

Carenco, S.; Labouille, S.; Bouchonnet, S.; Boissière, C.; Le Goff, X. F.; Sanchez, C.; Mézailles, N. Revisiting the molecular roots of a ubiquitously successful synthesis: Nickel(0) nanoparticles by reduction of [Ni(acetylacetonate)2]. Chem. -Eur. J. 2012, 18, 14165-14173.

33

Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862-879.

34

Ortiz, N.; Skrabalak, S. E. Manipulating local ligand environments for the controlled nucleation of metal nanoparticles and their assembly into nanodendrites. Angew. Chem., Int. Ed. 2012, 51, 11757-11761.

35

Yao, T.; Liu, S. J.; Sun, Z. H.; Li, Y. Y.; He, S.; Cheng, H.; Xie, Y.; Liu, Q. H.; Jiang, Y.; Wu, Z. Y. et al. Probing nucleation pathways for morphological manipulation of platinum nanocrystals. J. Am. Chem. Soc. 2012, 134, 9410-9416.

36

Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250-1261.

37

Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465-1476.

38

Sowers, K. L.; Swartz, B.; Krauss, T. D. Chemical mechanisms of semiconductor nanocrystal synthesis. Chem. Mater. 2013, 25, 1351-1362.

39

Lohse, S. E.; Burrows, N. D.; Scarabelli, L.; Liz-Marzán, L. M.; Murphy, C. J. Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014, 26, 34-43.

40

Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610-7630.

41

Lee, J.; Yang, J.; Kwon, S. G.; Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 2016, 1, 16034.

42

Liu, Q.; Gao, M. R.; Liu, Y. Z.; Okasinski, J. S.; Ren, Y.; Sun, Y. G. Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy X-ray scattering. Nano Lett. 2016, 16, 715-720.

43

Yin, X.; Wu, J. B.; Li, P. P.; Shi, M.; Yang, H. Self-heating approach to the fast production of uniform metal nanostructures. ChemNanoMat 2016, 2, 37-41.

44

Yin, X.; Shi, M.; Wu, J. B.; Pan, Y. T.; Gray, D. L.; Bertke, J. A.; Yang, H. Quantitative analysis of different formation modes of platinum nanocrystals controlled by ligand chemistry. Nano Lett. 2017, 17, 6146-6150.

45

Wang, Y.; Peng, H. C.; Liu, J. Y.; Huang, C. Z.; Xia, Y. N. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Nano Lett. 2015, 15, 1445-1450.

46

Xiong, Y. J.; Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y. N. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 2006, 22, 8563-8570.

47

Lv, T.; Wang, Y.; Choi, S. I.; Chi, M. F.; Tao, J.; Pan, L. K.; Huang, C. Z.; Zhu, Y. M.; Xia, Y. N. Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation. ChemSusChem 2013, 6, 1923-1930.

48

Liu, S. Y.; Shen, Y. T.; Chiu, C. Y.; Rej, S.; Lin, P. H.; Tsao, Y. C.; Huang, M. H. Direct synthesis of palladium nanocrystals in aqueous solution with systematic shape evolution. Langmuir 2015, 31, 6538-6545.

49

Wang, Y.; Xie, S. F.; Liu, J. Y.; Park, J.; Huang, C. Z.; Xia, Y. N. Shape-controlled synthesis of palladium nanocrystals: A mechanistic understanding of the evolution from octahedrons to tetrahedrons. Nano Lett. 2013, 13, 2276-2281.

50

Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem. 2011, 123, 6439-6443.

51

Ortiz, N.; Hammons, J. A.; Cheong, S.; Skrabalak, S. E. Monitoring ligand-mediated growth and aggregation of metal nanoparticles and nanodendrites by in situ synchrotron scattering techniques. ChemNanoMat 2015, 1, 109-114.

52

Yang, T. H.; Peng, H. C.; Zhou, S.; Lee, C. T.; Bao, S. X.; Lee, Y. H.; Wu, J. M.; Xia, Y. N. Toward a quantitative understanding of the reduction pathways of a salt precursor in the synthesis of metal nanocrystals. Nano Lett. 2017, 17, 334-340.

53

Ortiz, N.; Skrabalak, S. E. On the dual roles of ligands in the synthesis of colloidal metal nanostructures. Langmuir 2014, 30, 6649-6659.

54

Kang, Y. J.; Ye, X. C.; Murray, C. B. Size-and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. Angew. Chem., Int. Ed. 2010, 49, 6156-6159.

55

Wu, B. H.; Zheng, N. F.; Fu, G. Small molecules control the formation of Pt nanocrystals: A key role of carbon monoxide in the synthesis of Pt nanocubes. Chem. Commun. 2011, 47, 1039-1041.

56

Wu, J. B.; Gross, A.; Yang, H. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 2011, 11, 798-802.

57

Woodward, R. B. Structure and the absorption spectra of α, β-unsaturated ketones. J. Am. Chem. Soc. 1941, 63, 1123-1126.

58

Dabrowski, J.; Kamienska-Trela, K. Electronic spectra of alpha, beta-unsaturated carbonyl compounds. I. an evaluation of increments characteristic of changes in configuration (cis/trans) and conformation (s-cis/s-trans) based on direct observation of the isomerization of enamino aldehydes and ketones. J. Am. Chem. Soc. 1976, 98, 2826-2834.

59

Redjala, T.; Apostolecu, G.; Beaunier, P.; Mostafavi, M.; Etcheberry, A.; Uzio, D.; Thomazeau, C.; Remita, H. Palladium nanostructures synthesized by radiolysis or by photoreduction. New J. Chem. 2008, 32, 1403-1408.

60

Zhang, J. W.; Liu, J. Y.; Xie, Z. X.; Qin, D. HAuCl4: A dual agent for studying the chloride-assisted vertical growth of citrate-free Ag nanoplates with Au serving as a marker. Langmuir 2014, 30, 15520-15530.

61

Jang, H. J.; Ham, S.; Acapulco, J. A. I., Jr.; Song, Y.; Hong, S.; Shuford, K. L.; Park, S. Fabrication of 2D Au nanorings with Pt framework. J. Am. Chem. Soc. 2014, 136, 17674-17680.

62

Si, G. L.; Ma, Z. F.; Li, K.; Shi, W. T. Triangular Au-Ag nanoframes with tunable surface plasmon resonance signal from visible to near-infrared region. Plasmonics 2011, 6, 241-244.

63

Métraux, G. S.; Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Triangular nanoframes made of gold and silver. Nano Lett. 2003, 3, 519-522.

64

Jiang, L. P.; Xu, S.; Zhu, J. M.; Zhang, J. R.; Zhu, J. J.; Chen, H. Y. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem. 2004, 43, 5877-5883.

65

Bögels, G.; Buijnsters, J. G.; Verhaegen, S. A. C.; Meekes, H.; Bennema, P.; Bollen, D. Morphology and growth mechanism of multiply twinned AgBr and AgCl needle crystals. J. Cryst. Growth 1999, 203, 554-563.

66

Lofton, C.; Sigmund, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 2005, 15, 1197-1208.

67

Shao, M. H.; Yu, T.; Odell, J. H.; Jin, M.; Xia, Y. N. Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem. Commun. 2011, 47, 6566-6568.

68

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352-6357.

File
12274_2018_1993_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 November 2017
Revised: 04 January 2018
Accepted: 05 January 2018
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported in part by NSF (No. CHE1213926) and a start-up fund from UIUC. The authors acknowledge helpful discussions with Yung-Tin Pan and the assistance from Bing Ni. Sample characterization was carried out in part at the School of Chemical Sciences George L. Clark X-Ray Facility & 3M Materials Laboratory, and Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois.

Return