Journal Home > Volume 11 , Issue 8

Artificial photosynthesis uses a catalyst to convert CO2 into valuable hydrocarbon products by cleaving the C=O bond. However, this technology is strongly limited by two issues, namely insufficient catalytic efficiency and complicated catalyst-fabrication processes. Herein, we report the development of a novel spray-drying photocatalyst-engineering process that addresses these two issues. Through one-step spray drying, with a residence time of 1.5 s, nanocomposites composed of tin oxide (SnO2) nanoparticles and edge-oxidized graphene oxide (eo-GO) sheets were fabricated without post-treatment. These nanocomposites exhibited 28-fold and five-fold enhancements in photocatalytic efficiency during CO2 reduction compared to SnO2 and commercialized TiO2 (P25), respectively, after irradiation with simulated sunlight for 4 h. This scalable approach, based on short residence times and facile equipment setup, promotes the practical application of artificial photosynthesis through the potential mass production of efficient photocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4

Show Author's information Yujia Liang1Wei Wu1Peng Wang2Sz-Chian Liou3Dongxia Liu1( )Sheryl H. Ehrman1,4( )
Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMD20742USA
Advanced Imaging and Microscopy (AIM) LabNano CenterUniversity of MarylandCollege ParkMD20742USA
Charles W. Davidson College of EngineeringSan Jose State UniversitySan JoseCA95192USA

Abstract

Artificial photosynthesis uses a catalyst to convert CO2 into valuable hydrocarbon products by cleaving the C=O bond. However, this technology is strongly limited by two issues, namely insufficient catalytic efficiency and complicated catalyst-fabrication processes. Herein, we report the development of a novel spray-drying photocatalyst-engineering process that addresses these two issues. Through one-step spray drying, with a residence time of 1.5 s, nanocomposites composed of tin oxide (SnO2) nanoparticles and edge-oxidized graphene oxide (eo-GO) sheets were fabricated without post-treatment. These nanocomposites exhibited 28-fold and five-fold enhancements in photocatalytic efficiency during CO2 reduction compared to SnO2 and commercialized TiO2 (P25), respectively, after irradiation with simulated sunlight for 4 h. This scalable approach, based on short residence times and facile equipment setup, promotes the practical application of artificial photosynthesis through the potential mass production of efficient photocatalysts.

Keywords: artificial photosynthesis, CO2 photoreduction, spray drying, electron energy loss spectroscopy (EELS)

References(44)

1

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

2

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

3

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

4

Fang, B. Z.; Bonakdarpour, A.; Reilly, K.; Xing, Y. L.; Taghipour, F.; Wilkinson, D. P. Large-scale synthesis of TiO2 microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO2 to CH4. ACS Appl. Mater. Interfaces 2014, 6, 15488–15498.

5

Jiao, J. Q.; Wei, Y. C.; Zhao, Y. L.; Zhao, Z.; Duan, A. J.; Liu, J.; Pang, Y. Y.; Li, J. M.; Jiang, G. Y.; Wang, Y. J. AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: High efficient separation of photogenerated charge carriers. Appl. Catal. B 2017, 209, 228–239.

6

Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493.

7

Li, M. L.; Zhang, L. X.; Wu, M. Y.; Du, Y. Y.; Fan, X. Q.; Wang, M.; Zhang, L. L.; Kong, Q. L.; Shi, J. L. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 2016, 19, 145–155.

8

Ye, T.; Huang, W. M.; Zeng, L. M.; Li, M. L.; Shi, J. L. CeO2–x platelet from monometallic cerium layered double hydroxides and its photocatalytic reduction of CO2. Appl. Catal. B 2017, 210, 141–148.

9

Li, H. Y.; Gan, S. Y.; Wang, H. Y.; Han, D. X.; Niu, L. Intercorrelated superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: High engineering photocatalytic activities for water purification and CO2 reduction. Adv. Mater. 2015, 27, 6906–6913.

10

Murcia-López, S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Henriques, C.; Morante, J. R.; Andreu, T. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 2017, 7, 2878–2885.

11

Mao, J.; Peng, T. Y.; Zhang, X. L.; Li, K.; Zan, L. Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal. Commun. 2012, 28, 38–41.

12

Shown, I.; Hsu, H.-C.; Chang, Y.-C.; Lin, C.-H.; Roy, P. K.; Ganguly, A.; Wang, C.-H.; Chang, J.-K.; Wu, C.-I.; Chen, L.-C. et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. Nano Lett. 2014, 14, 6097–6103.

13

Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C. et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2013, 5, 262–268.

14

Lin, L.-Y.; Nie, Y.; Kavadiya, S.; Soundappan, T.; Biswas, P. N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species. Chem. Eng. J. 2017, 316, 449–460.

15

?erjav, G.; Arshad, M. S.; Djinovic, P.; Junkar, I.; Kovac, J.; Zava?nik, J.; Pintar, A. Improved electron–hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance. Nanoscale 2017, 9, 4578–4592.

16

Huang, S. Y.; Guo, C. F.; Zhang, X.; Pan, W.; Luo, X.; Zhao, C. S.; Gong, J. H.; Li, X. Y.; Ren, Z. F.; Wu, H. Buckled tin oxide nanobelt webs as highly stretchable and transparent photosensors. Small 2015, 11, 5712–5718.

17

Kim, D.; Shin, G.; Yoon, J.; Jang, D.; Lee, S. J.; Zi, G.; Ha, J. S. High performance stretchable UV sensor arrays of SnO2 nanowires. Nanotechnology 2013, 24, 315502.

18

Liu, Z. Y.; Sun, D. D.; Guo, P.; Leckie, J. O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 2007, 7, 1081–1085.

19

Hsieh, M.-C.; Wu, G.-C.; Liu, W.-G.; Goddard, W. A.; Yang, C.-M. Nanocomposites of tantalum-based pyrochlore and indium hydroxide showing high and stable photocatalytic activities for overall water splitting and carbon dioxide reduction. Angew. Chem., Int. Ed. 2014, 53, 14216–14220.

20

Ide, Y.; Inami, N.; Hattori, H.; Saito, K.; Sohmiya, M.; Tsunoji, N.; Komaguchi, K.; Sano, T.; Bando, Y.; Golberg, D. et al. Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment. Angew. Chem. Int. Ed. 2016, 55, 3600–3605.

21

Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.

22

AlOtaibi, B.; Fan, S. Z.; Wang, D. F.; Ye, J. H.; Mi, Z. T. Wafer-level artificial photosynthesis for CO2 reduction into CH4 and CO using GaN nanowires. ACS Catal. 2015, 5, 5342–5348.

23

Tahir, M.; Amin, N. S. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl. Catal. B 2015, 162, 98–109.

24

Zhong, K.; Peabody, G.; Glicksman, H.; Ehrman, S. Particle generation by cosolvent spray pyrolysis: Effects of ethanol and ethylene glycol. J. Mater. Res. 2012, 27, 2540–2550.

25

Liang, Y. J.; Felix, R.; Glicksman, H.; Ehrman, S. Cu-Sn binary metal particle generation by spray pyrolysis. Aerosol Sci. Technol. 2017, 51, 430–442.

26

Ikeue, K.; Nozaki, S.; Ogawa, M.; Anpo, M. Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catal. Lett. 2002, 80, 111–114.

27

Xie, S. J.; Wang, Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 2014, 4, 3644–3653.

28

Ikeue, K.; Yamashita, H.; Anpo, M.; Takewaki, T. Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: Effect of the hydrophobic and hydrophilic properties. J. Phys. Chem. B 2001, 105, 8350–8355.

29

Nie, Y.; Wang, W.-N.; Jiang, Y.; Fortner, J.; Biswas, P. Crumpled reduced graphene oxide-amine-titanium dioxide nanocomposites for simultaneous carbon dioxide adsorption and photoreduction. Catal. Sci. Technol. 2016, 6, 6187–6196.

30

Jiang, Y.; Wang, W.-N.; Biswas, P.; Fortner, J. D. Facile aerosol synthesis and characterization of ternary crumpled graphene–TiO2–magnetite nanocomposites for advanced water treatment. ACS Appl. Mater. Interfaces 2014, 6, 11766–11774.

31

Li, W. B.; Zhang, Y. F.; Xu, Z. H.; Yang, A. S.; Meng, Q.; Zhang, G. L. Self-assembled graphene oxide microcapsules with adjustable permeability and yolk–shell superstructures derived from atomized droplets. Chem. Commun. 2014, 50, 15867–15869.

32

Sohail, M.; Xue, H. L.; Jiao, Q. Z.; Li, H. S.; Khan, K.; Wang, S. S.; Zhao, Y. Synthesis of well-dispersed TiO2@reduced graphene oxide (rGO) nanocomposites and their photocatalytic properties. Mater. Res. Bull. 2017, 90, 125–130.

33

Nandiyanto, A. B. D.; Okuyama, K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 2011, 22, 1–19.

34

Park, G. D.; Lee, J.-H.; Lee, J.-K.; Kang, Y. C. Effect of esterification reaction of citric acid and ethylene glycol on the formation of multi-shelled cobalt oxide powders with superior electrochemical properties. Nano Res. 2014, 7, 1738–1748.

35

Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of defect densities in reduced graphene oxide. Carbon 2012, 50, 3666–3673.

36

Yang, Y.-C.; Huang, W.-Q.; Xu, L.; Hu, W. Y.; Peng, P.; Huang, G.-F. Hybrid TiO2/graphene derivatives nanocomposites: Is functionalized graphene better than pristine graphene for enhanced photocatalytic activity? Catal. Sci. Technol. 2017, 7, 1423–1432.

37

Mkhoyan, K. A.; Contryman, A. W.; Silcox, J.; Stewart, D. A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Nano Lett. 2009, 9, 1058–1063.

38

Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

39

Johari, P.; Shenoy, V. B. Modulating optical properties of graphene oxide: Role of prominent functional groups. ACS Nano 2011, 5, 7640–7647.

40

Song, H. J.; Zhang, L. C.; He, C. L.; Qu, Y.; Tian, Y. F.; Lv, Y. Graphene sheets decorated with SnO2 nanoparticles: In situ synthesis and highly efficient materials for cataluminescence gas sensors. J. Mater. Chem. 2011, 21, 5972–5977.

41

Jiao, S. P.; Xu, Z. P. Selective gas diffusion in graphene oxides membranes: A molecular dynamics simulations study. ACS Appl. Mater. Interfaces 2015, 7, 9052–9059.

42

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

43

Hong, J. D.; Zhang, W.; Ren, J.; Xu, R. Photocatalytic reduction of CO2: A brief review on product analysis and systematic methods. Anal. Methods 2013, 5, 1086–1097.

44

Tran, P. D.; Wong, L. H.; Barber, J.; Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 2012, 5, 5902–5918.

File
12274_2018_1988_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 November 2017
Revised: 27 December 2017
Accepted: 07 January 2018
Published: 25 January 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by National Science Foundation (No. CBET-1336581) and Army Research Office (No. ARO-W911NF-17-1-0363). The authors gratefully acknowledge the assistance of Dr. Yuhuang Wang (Department of Chemistry and Biochemistry, University of Maryland) for DRS. The authors acknowledge the support of the Maryland NanoCenter and its AIMLab.

Return