Journal Home > Volume 11 , Issue 6

Recently, the electrochemical N2 reduction reaction (NRR) in aqueous electrolytes at ambient temperature and pressure has demonstrated its unique advantages and potentials. The reactants are directly derived from gaseous N2 and water, which are naturally abundant, and NH3 production is important for fertilizers and other industrial applications. To improve the conversion yield and selectivity (mainly competing with water reduction), electrocatalysts must be rationally designed to optimize the mass transport, chemisorption, and transduction pathways of protons and electrons. In this review, we summarize recent progress in the electrochemical NRR. Studies of electrocatalyst designs are summarized for different categories, including metal-based catalysts, metal oxide-derived catalysts, and hybrid catalysts. Strategies for enhancing the NRR performance based on the facet orientation, metal oxide interface, crystallinity, and nitrogen vacancies are presented. Additional system designs, such as lithium-nitrogen batteries, and the solvent effect are introduced. Finally, existing challenges and prospects are discussed.


menu
Abstract
Full text
Outline
About this article

Aqueous electrocatalytic N2 reduction under ambient conditions

Show Author's information Na CaoGengfeng Zheng( )
Laboratory of Advanced MaterialsDepartment of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsCollaborative Innovation Center of Chemistry for Energy MaterialsFudan UniversityShanghai200438China

Abstract

Recently, the electrochemical N2 reduction reaction (NRR) in aqueous electrolytes at ambient temperature and pressure has demonstrated its unique advantages and potentials. The reactants are directly derived from gaseous N2 and water, which are naturally abundant, and NH3 production is important for fertilizers and other industrial applications. To improve the conversion yield and selectivity (mainly competing with water reduction), electrocatalysts must be rationally designed to optimize the mass transport, chemisorption, and transduction pathways of protons and electrons. In this review, we summarize recent progress in the electrochemical NRR. Studies of electrocatalyst designs are summarized for different categories, including metal-based catalysts, metal oxide-derived catalysts, and hybrid catalysts. Strategies for enhancing the NRR performance based on the facet orientation, metal oxide interface, crystallinity, and nitrogen vacancies are presented. Additional system designs, such as lithium-nitrogen batteries, and the solvent effect are introduced. Finally, existing challenges and prospects are discussed.

Keywords: electrocatalyst, faradaic efficiency, N2 reduction, aqueous electrolyte

References(87)

1

Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-The selectivity challenge. ACS Catal. 2017, 7, 706–709.

2

Cui, B. C.; Zhang, J. H.; Liu, S. Z.; Liu, X. J.; Xiang, W.; Liu, L. F.; Xin, H. Y.; Lefler, M. J.; Licht, S. Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon. Green Chem. 2017, 19, 298–304.

3

Schlögl, R. Catalytic synthesis of ammonia-A "never-ending story"? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

4

Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

5

Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–449.

6

Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.

7

Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

8

Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.

9

van Kessel, M. A. H. J.; Speth, D. R.; Albertsen, M.; Nielsen, P. H.; Op den Camp, H. J. M.; Kartal, B.; Jetten, M. S. M.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555–559.

10

Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.

11

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81.

12

Galloway, J. N.; Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 2002, 31, 64–71.

13

Hao, Y. C.; Dong, X. L.; Zhai, S. R.; Ma, H. C.; Wang, X. Y.; Zhang, X. F. Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chem. Eur. J. 2016, 22, 18722–18728.

14

Burgess, B.; Wherland, S.; Newton, W.; Stiefel, E. I. Nitrogenase reactivity: Insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Biochemistry 1981, 20, 5140–5146.

15

Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

16

Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B: Environ. 2017, 200, 323–329.

17

Li, X. M.; Wang, W. Z.; Jiang, D.; Sun, S. M.; Zhang, L.; Sun, X. Efficient solar-driven nitrogen fixation over carbon-tungstic- acid hybrids. Chemistry 2016, 22, 13819–13822.

18

Sun, S. M.; An, Q.; Wang, W. Z.; Zhang, L.; Liu, J. J.; Goddard Ⅲ, W. A. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 2017, 5, 201–209.

19

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {111} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

20

Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76–78.

21

Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.

22

Pappenfus, T. M.; Lee, K.; Thoma, L. M.; Dukart, C. R. Wind to ammonia: Electrochemical processes in room temperature Ionic liquids. ECS Trans. 2009, 16, 89–93.

23

Lu, Y. F.; Li, J.; Tada, T.; Toda, Y.; Ueda, S.; Yokoyama, T.; Kitano, M.; Hosono, H. Water durable electride Y5Si3: Electronic structure and catalytic activity for ammonia synthesis. J. Am. Chem. Soc. 2016, 138, 3970–3973.

24

Kugler, K.; Ohs, B.; Scholz, M.; Wessling, M. Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis. Phys. Chem. Chem. Phys. 2014, 16, 6129–6138.

25

Guo, X. H.; Zhu, Y. P.; Ma, T. Y. Lowering reaction temperature: Electrochemical ammonia synthesis by coupling various electrolytes and catalysts. J. Energy Chem. 2017, 26, 1107–1116.

26

Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.

27

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

28

Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2–13.

29

Kuang, M.; Zheng, G. F. Nanostructured bifunctional redox electrocatalysts. Small 2016, 12, 5656–5675.

30

Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380.

31

Abghoui, Y.; Skúlason, E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group Ⅲ–Ⅶ transition metal mononitrides. Catal. Today 2017, 286, 78–84.

32

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

33

Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three-phase reactor. ACS Sustain. Chem. Eng. 2017, 5, 7393–7400.

34

Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

35

Skulason, E.; Bligaard, T.; Gudmundsdottir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

36

Nguyen, M. T.; Seriani, N.; Gebauer, R. Nitrogen electrochemically reduced to ammonia with hematite: Density-functional insights. Phys. Chem. Chem. Phys. 2015, 17, 14317–14322.

37

Kumar, C. V. S.; Subramanian, V. Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation? -A DFT investigation. Phys. Chem. Chem. Phys. 2017, 19, 15377–15387.

38

Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

39

Howalt, J. G.; Vegge, T. Electrochemical ammonia production on molybdenum nitride nanoclusters. Phys. Chem. Chem. Phys. 2013, 15, 20957–20965.

40

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

41

Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

42

Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of "active sites": Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961.

43

Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.

44

Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.

45

Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

46

Kugler, K.; Luhn, M.; Schramm, J. A.; Rahimi, K.; Wessling, M. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys. Chem. Chem. Phys. 2015, 17, 3768–3782.

47

Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231.

48

Ishikawa, A.; Doi, T.; Nakai, H. Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis. J. Catal. 2018, 357, 213–222.

49

Pickett, C.; Talarmin, J. Electrosynthesis of ammonia. Nature 1985, 317, 652–653.

50

Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine. J. Electroanal. Chem. Interf. Electrochem. 1989, 263, 171–174.

51

Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by metal phthalocyanines. J. Electroanal. Chem. Interf. Electrochem. 1989, 272, 263–266.

52

Shipman, M. A.; Symes, M. D. A re-evaluation of Sn(Ⅱ) phthalocyanine as a catalyst for the electrosynthesis of ammonia. Electrochim. Acta 2017, 258, 618–622.

53

Jeong, E. Y.; Yoo, C. Y.; Jung, C. H.; Park, J. H.; Park, Y. C.; Kim, J. N.; Oh, S. G.; Woo, Y.; Yoon, H. C. Electrochemical ammonia synthesis mediated by titanocene dichloride in aqueous electrolytes under ambient conditions. ACS Sustainable Chem. Eng. 2017, 5, 9662–9666.

54

Hellman, A.; Baerends, E. J.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D. C.; Dahl, S.; van Harrevelt, R.; Honkala, K.; Jonsson, H. et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 2006, 110, 17719–17735.

55

Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru (0001). Phys. Rev. Lett. 1999, 83, 1814–1817.

56

Dahl, S.; Törnqvist, E.; Chorkendorff, I. Dissociative adsorption of N2 on Ru (0001): A surface reaction totally dominated by steps. J. Catal. 2000, 192, 381–390.

57

Strongin, D. R.; Carrazza, J.; Bare, S. R.; Somoriai, G. A. The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. J. Catal. 1987, 103, 213–215.

58

Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.

59

Renner, J. N.; Greenlee, L. F.; Ayres, K. E.; Herring, A. M. Electrochemical synthesis of ammonia: A low pressure, low temperature approach. Electrochem. Soc. Interface 2015, 24, 51–57.

60

Kong, J.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J. et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10986–10995.

61

Höskuldsson, á. B.; Abghoui, Y.; Gunnarsdóttir, A. B.; Skúlason, E. Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustainable Chem. Eng. 2017, 5, 10327–10333.

62

Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst. J. Electroanal. Chem. Interfac. Electrochem. 1990, 291, 269–272.

63

Lan, R.; Alkhazmi, K. A.; Amar, I. A.; Tao, S. W. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst. Electrochim. Acta 2014, 123, 582–587.

64

Bruix, A.; Rodriguez, J. A.; Ramirez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 2012, 134, 8968–8974.

65

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

66

Wang, R.; Xue, X. Y.; Lu, W. C.; Liu, H. W.; Lai, C.; Xi, K.; Che, Y. K.; Liu, J. Q.; Guo, S. J.; Yang, D. J. Tuning and understanding the phase interface of TiO2 nanoparticles for more efficient lithium ion storage. Nanoscale 2015, 7, 12833–12838.

67

Guo, S. J.; Zhang, X.; Zhu, W. L.; He, K.; Su, D.; Mendoza-Garcia, A.; Ho, S. F.; Lu, G.; Sun, S. H. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 2014, 136, 15026–15033.

68

Farmer, J. A.; Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 2010, 329, 933–936.

69

Wang, Y. H.; Cui, X. Q.; Zhang, Y. Y.; Zhang, L. J.; Gong, X. G.; Zheng, G. F. Achieving high aqueous energy storage via hydrogen-generation passivation. Adv. Mater. 2016, 28, 7626–7632.

70

Abghoui, Y.; Garden, A. L.; Hlynsson, V. F.; Björgvinsdóttir, S.; Ólafsdóttir, H.; Skúlason, E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 2015, 17, 4909–4918.

71

Azofra, L. M.; Li, N.; MacFarlane, D. R.; Sun, C. H. Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545–2549.

72

Zhao, X. R.; Yin, F. X.; Liu, N.; Li, G. R.; Fan, T. X.; Chen, B. H. Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci. 2017, 52, 10175–10185.

73

Abghoui, Y.; Garden, A. L.; Howat, J. G.; Vegge, T.; Skúlason, E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments. ACS Catal. 2016, 6, 635–646.

74

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

75

Köleli, F.; Kayan, D. B. Low overpotential reduction of dinitrogen to ammonia in aqueous media. J. Electroanal. Chem. 2010, 638, 119–122.

76

Kim, K.; Lee, N.; Yoo, C. Y.; Kim, J. N.; Yoon, H. C.; Han, J. I. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. J. Electrochem. Soc. 2016, 163, F610–F612.

77

Kim, K.; Yoo, C. Y.; Kim, J. N.; Yoon, H. C.; Han, J. I. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure. J. Electrochem. Soc. 2016, 163, F1523–F1526.

78

Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium- nitrogen battery for energy storage. Chem 2017, 2, 525–532.

79

Lan, R.; Irvine, J. T. S.; Tao, S. W. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 2013, 3, 1145.

80

Köleli, F.; Röpke, T. Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Appl. Catal. B 2006, 62, 306–310.

81

Lan, R.; Tao, S. W. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4 + mixed conducting electrolyte. RSC Adv. 2013, 3, 18016–18021.

82

Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 2005, 38, 955–962.

83

Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84–87.

84

Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 2010, 3, 120–125.

85

Jackson, M. N.; Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer. J. Am. Chem. Soc. 2016, 138, 3228–3234.

86

Christensen, C. H.; Johannessen, T.; Sørensen, R. Z.; Nørskov, J. K. Towards an ammonia-mediated hydrogen economy? Catal. Today 2006, 111, 140–144.

87

Lan, R.; Tao, S. W. Ammonia as a suitable fuel for fuel cells. Front. Energy Res. 2014, 2, 35.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 November 2017
Revised: 14 December 2017
Accepted: 06 January 2018
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We thank the following funding agencies for supporting this work: the National Key Research and Development Program of China (Nos. 2017YFA0206901 and 2017YFA0206900), the National Natural Science Foundation of China (Nos. 21473038 and 21773036), the Science and Technology Commission of Shanghai Municipality (No. 17JC1402000), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChem).

Return