Journal Home > Volume 11 , Issue 8

Spinel LiMn2O4 is a widely utilized cathode material for Li-ion batteries. However, its applications are limited by its poor energy density and power density. Herein, a novel hierarchical porous onion-like LiMn2O4(LMO) was prepared to shorten the Li+ diffusion pathway with the presence of uniform pores and nanosized primary particles. The growth mechanism of the porous onion-like LiMn2O4 was analyzed to control the morphology and the crystal structure so that it forms a polyhedral crystal structure with reduced Mn dissolution. In addition, graphene was added to the cathode (LiMn2O4/graphene) to enhance the electronic conductivity. The synthesized LiMn2O4/graphene exhibited an ultrahigh-rate performance of 110.4 mAh·g-1 at 50 C and an outstanding energy density at a high power density, maintaining 379.4 Wh·kg-1 at 25, 293 W·kg-1. Besides, it shows durable stability, with only 0.02% decrease in the capacity per cycle at 10 C. Furthermore, the (LiMn2O4/graphene)/graphite full-cell exhibited a high discharge capacity. This work provides a promising method for the preparation of outstanding, integrated cathodes for potential applications in lithium ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium ion batteries

Show Author's information Zihe Li1Xiangming Feng1( )Liwei Mi2Jinyun Zheng1Xiaoyang Chen1Weihua Chen1,3( )
College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhou450001China
Center for Advanced Materials ResearchZhongyuan University of TechnologyZhengzhou450007China
National Engineering and Research Center for Adv. Polymer Processing TechnologyZhengzhou UniversityZhengzhou450001China

Abstract

Spinel LiMn2O4 is a widely utilized cathode material for Li-ion batteries. However, its applications are limited by its poor energy density and power density. Herein, a novel hierarchical porous onion-like LiMn2O4(LMO) was prepared to shorten the Li+ diffusion pathway with the presence of uniform pores and nanosized primary particles. The growth mechanism of the porous onion-like LiMn2O4 was analyzed to control the morphology and the crystal structure so that it forms a polyhedral crystal structure with reduced Mn dissolution. In addition, graphene was added to the cathode (LiMn2O4/graphene) to enhance the electronic conductivity. The synthesized LiMn2O4/graphene exhibited an ultrahigh-rate performance of 110.4 mAh·g-1 at 50 C and an outstanding energy density at a high power density, maintaining 379.4 Wh·kg-1 at 25, 293 W·kg-1. Besides, it shows durable stability, with only 0.02% decrease in the capacity per cycle at 10 C. Furthermore, the (LiMn2O4/graphene)/graphite full-cell exhibited a high discharge capacity. This work provides a promising method for the preparation of outstanding, integrated cathodes for potential applications in lithium ion batteries.

Keywords: rate performance, cathode, LiMn2O4 , hierarchical porous shape, Li-ion batteries

References(52)

1

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Eectrochem. Soc. 1997, 144, 1188-1194.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

3

Lee, E. -S.; Huq, A.; Chang, H. -Y.; Manthiram, A. High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries. Chem. Mater. 2012, 24, 600-612.

4

Cao, F. -F.; Guo, Y. -G.; Zheng, S. -F.; Wu, X. -L.; Jiang, L. -Y.; Bi, R. -R.; Wan, L. -J.; Maier, J. Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 2010, 22, 1908-1914.

5

Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 239-241.

6

Yang, J. S.; Xiao, L. F.; He, W.; Fan, J. W.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Understanding voltage decay in lithium-rich manganese-based layered cathode materials by limiting cutoff voltage. ACS Appl. Mater. Interfaces 2016, 8, 18867-18877.

7

Lee, S.; Cho, Y.; Song, H. -K.; Lee, K. T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 124, 8878-8882.

8

Saubanère, M.; McCalla, E.; Tarascon, J. -M.; Doublet, M. -L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ. Sci. 2016, 9, 984-991.

9

Ryou, M. -H.; Lee, Y. M.; Park, J. -K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 2011, 23, 3066-3070.

10

Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 2015, 92, 41-63.

11

Chen, J.; Song, W. X.; Hou, H.; S. Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793-6801.

12

Liu, S.; Feng, J. K.; Bian, X. F.; Qian, Y. T.; Liu, J.; Xu, H. Nanoporous germanium as high-capacity lithium-ion battery anode. Nano Energy 2015, 13, 651-657.

13

Park, O. K.; Cho, Y.; Lee, S.; Yoo, H. -C.; Song, H. -K.; Cho, J. Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 2011, 4, 1621-1633.

14

Wang, H.; Ben, L. B.; Yu, H. L.; Chen, Y. Y.; Yang, X. N.; Huang, X. J. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. J. Mater. Chem. A 2017, 5, 822-834.

15

He, H. B.; Cong, H. J.; Sun, Y.; Zan, L.; Zhang, Y. X. Spinel-layered integrate structured nanorods with both high capacity and superior high-rate capability as cathode material for lithium-ion batteries. Nano Res. 2017, 10, 556-569.

16

Zettsu, N.; Yoda, T.; Onodera, H.; Handa, N.; Kondo, H.; Teshima, K. Growth of hollow-structured LiMn2O4 crystals starting from Mn metal in molten KCl through the microscale Kirkendall effect. CrystEngComm 2016, 18, 2105-2111.

17

Xu, G. J.; Liu, Z. H.; Zhang, C. J.; Cui, G. L.; Chen, L. Q. Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. J. Mater. Chem. A 2015, 3, 4092-4123.

18

Sun, Y. -K.; Lee, M. -J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 2012, 24, 1192-1196.

19

Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045-1051.

20

Lee, S.; Cho, Y.; Song, H. -K.; Lee, K. T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power Lithium-ion batteries. Angew. Chem., Int. Ed. 2012, 51, 8748-8752.

21

He, J. R.; Chen, Y. F.; Li, P. J.; Fu, F.; Liu, J. B.; Wang, Z. G. Facile fabrication of RGO wrapped LiMn2O4 nanorods as a cathode with enhanced specific capacity. RSC Adv. 2015, 5, 80063-80068.

22

Xue, Y.; Wang, Z. B.; Zheng, L. L.; Yu, F. D.; Liu, B. S.; Zhang, Y.; Ke, K. Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries. Sci. Rep. 2015, 5, 13299.

23

Mandal, S.; Rojas, R. M.; Amarilla, J. M.; Calle, P.; Kosova, N. V.; Anufrienko, V. F.; Rojo, J. M. High temperature Co-doped LiMn2O4-based spinels. Structural, electrical, and electrochemical characterization. Chem. Mater. 2002, 14, 1598-1605.

24

Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294-1305.

25

Kim, D. K.; Muralidharan, P.; Lee, H. -W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H. L.; Huggins, R. A.; Cui, Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948-3952.

26

Ding, Y. -L.; Xie, J.; Cao, G. -S.; Zhu, T. -J.; Yu, H. -M.; Zhao, X. -B. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater. 2011, 21, 348-355.

27

Fan, J. M.; Yu, Y.; Wang, Y.; Wu, Q. -H.; Zheng, M. S.; Dong, Q. F. Nonaqueous synthesis of nano-sized LiMnPO4@C as a cathode material for high performance lithium ion batteries. Electrochim. Acta 2016, 194, 52-58.

28

Chen, S. G.; Wei, Z. D.; Qi, X. Q.; Dong, L. C.; Guo, Y. -G.; Wan, L. J.; Shao, Z. G.; Li, L. Nanostructured polyaniline-decorated Pt/C@pani core-shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134, 13252-13255.

29

Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805-815.

30

Fan, L. -Z.; Hu, Y. -S.; Maier, J.; Adelhelm, P.; Smarsly, B.; Antonietti, M. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater. 2007, 17, 3083-3087.

31

Luo, J. -Y.; Xiong, H. -M.; Xia, Y. -Y. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. J. Phys. Chem. C 2008, 112, 12051-12057.

32

Tang, W.; Liu, L. L.; Tian, S.; Li, L.; Li, L. L.; Yue, Y. B.; Bai, Y.; Wu, Y. P.; Zhu, K.; Holze, R. LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochem. Commun. 2011, 13, 1159-1162.

33

Luo, J. Y.; Wang, Y. -G.; Xiong, H. -M.; Xia, Y. -Y. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chem. Mater. 2007, 19, 4791-4795.

34

Lee, H. W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852-3856.

35

Wang, Y. H.; Wang, Y. H.; Jia, D. S.; Peng, Z.; Xia, Y. Y.; Zheng, G. F. All-nanowire based Li-ion full cells using homologous Mn2O3 and LiMn2O4. Nano Lett. 2014, 14, 1080-1084.

36

Zhu, C. Y.; Saito, G.; Akiyama, T. A new CaCO3-template method to synthesize nanoporous manganese oxide hollow structures and their transformation to high-performance LiMn2O4 cathodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 7077-7082.

37

Jeong, M.; Lee, M. -J.; Cho, J.; Lee, S. Surface Mn oxidation state controlled spinel LiMn2O4 as a cathode material for high-energy Li-ion batteries. Adv. Energy Mater. 2015, 5, 1500440.

38

Guan, D. S.; Jeevarajan, J. A.; Wang, Y. Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings. Nanoscale 2011, 3, 1465-1469.

39

Moorhead-Rosenberg, Z.; Huq, A.; Goodenough, J. P.; Manthiram, A. Electronic and electrochemical properties of Li1−xMn1.5Ni0.5O4 spinel cathodes as a function of lithium content and cation ordering. Chem. Mater. 2015, 27, 6934-6945.

40

Chen, K. S.; Xu, R.; Luu, N. S.; Secor, E. B.; Hamamoto, K.; Li, Q.; Kim, S.; Sangwan, V. K.; Balla, I.; Guiney, L. M. et al. Comprehensive enhancement of nanostructured lithium-ion battery cathode materials via conformal graphene dispersion. Nano Lett. 2017, 17, 2539-2546.

41

Cheng, F. Y.; Wang, H. B.; Zhu, Z. Q.; Wang, Y.; Zhang, T. R.; Tao, Z. L.; Chen, J. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 2011, 4, 3668-3675.

42

Li, Y. Y.; Feng, X. M.; Cui, S. Z.; Shi, Q. Z.; Mi, L. W.; Chen, W. H. From α-NaMnO2 to crystal water containing Na-birnessite: Enhanced cycling stability for sodium-ion batteries. CrystEngComm 2016, 18, 3136-3141.

43

Lin, H. B.; Hu, J. N.; Rong, H. B.; Zhang, Y. M.; Mai, S. W.; Xing, L. D.; Xu, M. Q.; Li, X. P.; Li, W. S. Porous LiMn2O4 cubes architectured with single-crystalline nanoparticles and exhibiting excellent cyclic stability and rate capability as the cathode of a lithium ion battery. J. Mater. Chem. A 2014, 2, 9272-9279.

44

Zhou, H. W.; Ding, X. N.; Liu, G. C.; Jiang, Y.; Yin, Z.; Wang, X. D. Preparation and characterization of ultralong spinel lithium manganese oxide nanofiber cathode via electrospinning method. Electrochim. Acta 2015, 152, 274-279.

45

Liu, H. D.; Wang, J.; Zhang, X. F.; Zhou, D.; Qi, X.; Qiu, B.; Fang, J. H.; Kloepsch, R.; Schumacher, G.; Liu, Z. P. et al. Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: The critical effects of surface orientations and particle size. ACS Appl. Mater. Interfaces 2016, 8, 4661-4675.

46

Hung, I. M.; Yang, Y. C.; Su, H. J.; Zhang, J. Influences of the surfactant on the performance of nano-LiMn2O4 cathode material for lithium-ion battery. Ceram. Int. 2015, 41, S779-S786.

47

Mohanty, D.; Sefat, A. S.; Payzant, E. A.; Li, J. L.; Wood D. L. Ⅲ; Daniela, C. Unconventional irreversible structural changes in a high-voltage Li-Mn-rich oxide for lithium-ion battery cathodes. J. Power Sources. 2015, 283, 423-428.

48

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.

49

Zu, C. -X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614-2624.

50

Wang, J. F.; Liu, W.; Liu, S.; Chen, J. X.; Wang, H. L.; Zhao, S. P. Biomass derived fabrication of a novel sea cucumber-like LiMn2O4/C composite with a hierarchical porous structure as the cathode for lithium-ion batteries. Electrochim. Acta 2016, 188, 645-652.

51

Deng, J. Q.; Pan, J.; Yao, Q. R.; Wang, Z. M.; Zhou, H. Y.; Rao, J. H. Porous core-shell LiMn2O4 microellipsoids as high-performance cathode materials for Li-ion batteries. J. Power Sources. 2015, 278, 370-374.

52

Nageswaran, S.; Keppeler, M.; Kim, S. J.; Srinivasan, M. Morphology controlled Si-modified LiNi0.5Mn1.5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries. J. Power Sources. 2017, 346, 89-96.

File
12274_2018_1986_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 October 2017
Revised: 21 December 2017
Accepted: 06 January 2018
Published: 06 February 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771164 and 21671205), Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Nos. 15HASTIT003 and 152300410045.0) and Student's Platform for Innovation and Entrepreneurship Training Program of Zhengzhou University (No. 2017cxcy056).

Return