Journal Home > Volume 11 , Issue 5

Tapering of vapour-liquid-solid (VLS) grown nanowires (NWs) is a widespread phenomenon resulting from dynamics of the liquid droplet during growth anddirect vapour-solid (VS) growth on the sidewall. To investigate both effects in ahighly controlled way, we developed a novel two-step growth approach for the selective area growth (SAG) of GaAs nanowires (NWs) by molecular beam epitaxy. In this growth approach optimum growth parameters are provided for thenucleation of NWs in a first step and for the shape variation during elongationin a second step, allowing NWs with a thin diameter (45 nm) and an untapered morphology to be realized with high vertical yield. We quantify the flux dependenceof radial VS growth and build a model that takes into account diffusion on theNW sidewalls to explain the observed VS growth rates. As our model is consistent with axial VLS growth we can combine it with an existing model for the diameter variation due to the droplet dynamics at the NW top. Thereby, we achieve fullunderstanding of the diameter of NWs over their entire length and the evolutionof the diameter and tapering during growth. We conclude that only the combinationof droplet dynamics and VS growth results in an untapered morphology. This result enables NW shape engineering and has important implications for doping of NWs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Diameter evolution of selective area grown Ga-assisted GaAs nanowires

Show Author's information Hanno Küpers1( )Ryan B. Lewis1Abbes Tahraoui1Mathias Matalla2Olaf Krüger2Faebian Bastiman1Henning Riechert1Lutz Geelhaar1
Paul-Drude-Institut für FestkörperelektronikHausvogteiplatz 5–710117Berlin, Germany
Ferdinand-Braun-InstitutLeibniz-Institut für HöchstfrequenztechnikGustav-Kirchhoff-Strasse 412489Berlin, Germany

Abstract

Tapering of vapour-liquid-solid (VLS) grown nanowires (NWs) is a widespread phenomenon resulting from dynamics of the liquid droplet during growth anddirect vapour-solid (VS) growth on the sidewall. To investigate both effects in ahighly controlled way, we developed a novel two-step growth approach for the selective area growth (SAG) of GaAs nanowires (NWs) by molecular beam epitaxy. In this growth approach optimum growth parameters are provided for thenucleation of NWs in a first step and for the shape variation during elongationin a second step, allowing NWs with a thin diameter (45 nm) and an untapered morphology to be realized with high vertical yield. We quantify the flux dependenceof radial VS growth and build a model that takes into account diffusion on theNW sidewalls to explain the observed VS growth rates. As our model is consistent with axial VLS growth we can combine it with an existing model for the diameter variation due to the droplet dynamics at the NW top. Thereby, we achieve fullunderstanding of the diameter of NWs over their entire length and the evolutionof the diameter and tapering during growth. We conclude that only the combinationof droplet dynamics and VS growth results in an untapered morphology. This result enables NW shape engineering and has important implications for doping of NWs.

Keywords: nanowire, semiconductor, molecular beam epitaxy, GaAs, growth model, tapering

References(39)

1

Qian, F.; Gradečak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287-2291.

2

Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, K.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010, 10, 1639-1644.

3

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897-1899.

4

Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P. D.; Saykally, R. J. Single gallium nitride nanowire lasers. Nat. Mater. 2002, 1, 106-110.

5

Hua, B.; Motohisa, J.; Kobayashi, Y.; Hara, S.; Fukui, T. Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 2009, 9, 112-116.

6

LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J. P.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. Ⅲ-Ⅴ nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi-Rapid Res. Lett. 2013, 7, 815-830.

7

Bakkers, E. P. A. M.; Borgström, M. T.; Verheijen, M. A. Epitaxial growth of Ⅲ-Ⅴ nanowires on group Ⅳ substrates. MRS Bull. 2007, 32, 117-122.

8

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89-90.

9

Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; Fontcuberta i Morral, A. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 2008, 77, 155326.

10

Jabeen, F.; Grillo, V.; Rubini, S.; Martelli, F. Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 2008, 19, 275711.

11

Munsch, M.; Malik, N. S.; Dupuy, E.; Delga, A.; Bleuse, J.; Gérard, J. M.; Claudon, J.; Gregersen, N.; Mørk, J. Dielectric GaAs antenna ensuring an efficient broadband coupling between an INAS quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 2013, 110, 177402.

12

Heiss, M.; Russo-Averchi, E.; Dalmau-Mallorquí, A.; Tütüncüoğlu, G.; Matteini, F.; Rüffer, D.; Conesa-Boj, S.; Demichel, O.; Alarcon-Lladó, E.; Fontcuberta i Morral, A. Ⅲ-Ⅴ nanowire arrays: Growth and light interaction. Nanotechnology 2014, 25, 014015.

13

Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78, 2214-2216.

14

Paek, J. H.; Nishiwaki, T.; Yamaguchi, M.; Sawaki, N. Catalyst free MBE-VLS growth of GaAs nanowires on (111)Si substrate. Phys. Status Solidi 2009, 6, 1436-1440.

15

Rudolph, D.; Hertenberger, S.; Bolte, S.; Paosangthong, W.; Spirkoska, D.; Döblinger, M.; Bichler, M.; Finley, J. J.; Abstreiter, G.; Koblmüller, G. Direct observation of a noncatalytic growth regime for GaAs nanowires. Nano Lett. 2011, 11, 3848-3854.

16

Krogstrup, P.; Jørgensen, H. I.; Johnson, E.; Madsen, M. H.; Sørensen, C. B.; Fontcuberta i Morral, A.; Aagesen, M.; Nygård, J.; Glas, F. Advances in the theory of Ⅲ-Ⅴ nanowire growth dynamics. J. Phys. D: Appl. Phys. 2013, 46, 313001.

17

Tersoff, J. Stable self-catalyzed growth of Ⅲ-Ⅴ nanowires. Nano Lett. 2015, 15, 6609-6613.

18

Dubrovskii, V. G. Group V sensitive vapor-liquid-solid growth of Au-catalyzed and self-catalyzed Ⅲ-Ⅴ nanowires. J. Cryst. Growth 2016, 440, 62-68.

19

Wang, Y. W.; Schmidt, V.; Senz, S.; Gösele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186-189.

20

Paiano, P.; Prete, P.; Lovergine, N.; Mancini, A. M. Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine. J. Appl. Phys. 2006, 100, 094305.

21

Krylyuk, S.; Davydov, A. V.; Levin, I. Tapering control of Si nanowires grown from SiCl4 at reduced pressure. ACS Nano 2011, 5, 656-664.

22

Sartel, C.; Dheeraj, D. L.; Jabeen, F.; Harmand, J. C. Effect of arsenic species on the kinetics of GaAs nanowires growth by molecular beam epitaxy. J. Cryst. Growth 2010, 312, 2073-2077.

23

Rieger, T.; Heiderich, S.; Lenk, S.; Lepsa, M. I.; Grützmacher, D. Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer. J. Cryst. Growth 2012, 353, 39-46.

24

Gibson, S.; LaPierre, R. Study of radial growth in patterned self-catalyzed GaAs nanowire arrays by gas source molecular beam epitaxy. Phys. Status Solidi-Rapid Res. Lett. 2013, 7, 845-849.

25

Munshi, A. M.; Dheeraj, D. L.; Fauske, V. T.; Kim, D. C.; Huh, J.; Reinertsen, J. F.; Ahtapodov, L.; Lee, K. D.; Heidari, B.; van Helvoort, A. T. J. et al. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography. Nano Lett. 2014, 14, 960-966.

26

Motohisa, J.; Noborisaka, J.; Takeda, J.; Inari, M.; Fukui, T. Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates. J. Cryst. Growth 2004, 272, 180-185.

27

Bauer, B.; Rudolph, A.; Soda, M.; Fontcuberta i Morral, A.; Zweck, J.; Schuh, D.; Reiger, E. Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology 2010, 21, 435601.

28

Plissard, S. R.; Dick, K. A.; Larrieu, G.; Godey, S.; Addad, A.; Wallart, X.; Caroff, P. Gold-free growth of GaAs nanowires on silicon: Arrays and polytypism. Nanotechnology 2010, 21, 385602.

29

Bastiman, F.; Küpers, H.; Somaschini, C.; Geelhaar, L. Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 2016, 27, 095601.

30

Plissard, S.; Larrieu, G.; Wallart, X.; Caroff, P. High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning. Nanotechnology 2011, 22, 275602.

31

Gibson, S. J.; Boulanger, J. P.; LaPierre, R. R. Opportunities and pitfalls in patterned self-catalyzed GaAs nanowire growth on silicon. Semicond. Sci. Technol. 2013, 28, 105025.

32

Rudolph, D.; Schweickert, L.; Morkötter, S.; Loitsch, B.; Hertenberger, S.; Becker, J.; Bichler, M.; Abstreiter, G.; Finley, J. J.; Koblmüller, G. Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires. Appl. Phys. Lett. 2014, 105, 033111.

33

Dubrovskii, V. G.; Xu, T.; Díaz Álvarez, A.; Plissard, S. R.; Caroff, P.; Glas, F.; Grandidier, B. Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires. Nano Lett. 2015, 15, 5580-5584.

34

Ralston, J.; Wicks, G. W.; Eastman, L. F. Reflection high-energy electron diffraction intensity oscillation study of Ga desorption from molecular beam epitaxially grown AlxGa1-xAs. J. Vac. Sci. Technol. B 1986, 4, 594-597.

35

Fick, A. Ueber diffusion. Ann. Der Phys. Und Chem. 1855, 170, 59-86.

36

Ramdani, M. R.; Harmand, J. C.; Glas, F.; Patriarche, G.; Travers, L. Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 2013, 13, 91-96.

37

Casadei, A.; Krogstrup, P.; Heiss, M.; Röhr, J. A.; Colombo, C.; Ruelle, T.; Upadhyay, S.; Soørensen, C. B.; Nygaård, J.; Fontcuberta i Morral, A. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires. Appl. Phys. Lett. 2013, 102, 013117.

38

Borgström, M. T.; Immink, G.; Ketelaars, B.; Algra, R.; Bakkers, E. P. A. M. Synergetic nanowire growth. Nat. Nanotechnol. 2007, 2, 541-544.

39

Küpers, H.; Tahraoui, A.; Lewis, R. B.; Rauwerdink, S.; Matalla, M.; Krüger, O.; Bastiman, F.; Riechert, H.; Geelhaar, L. Surface preparation and patterning by nano imprint lithography for the selective area growth of GaAs nanowires on Si(111). Semicond. Sci. Technol. 2017, 32, 115003.

File
12274_2018_1984_MOESM1_ESM.pdf (546.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 October 2017
Accepted: 07 January 2018
Published: 12 February 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant Ge2224/2, R.B.L. acknowledges funding from the Alexander von Humboldt Foundation. We are grateful to Anne-Kathrin Bluhm for acquiring SEM images, to Michael Höricke and Carsten Stemmler as well as Arno Wirsig for technical support at the MBE system and to Bernd Drescher and Sander Rauwerdink for substrate preparation. We appreciate the critical reading of the manuscript by Patrick Vogt.

Return