Journal Home > Volume 11 , Issue 8

A triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) were hybridized to harvest the human mechanical energy. By an effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator with a radius of 2 cm and height of 1.2 cm could charge a 1, 000 μF capacitor to 5.09 V after 100 cycles of vibration. This mini-sized hybrid nanogenerator could then be embedded in shoes to serve as an energy cell. Typical outdoor applications—including driving with a Global Positioning System (GPS) device, charging a Li-ion battery and a cell phone—were successfully demonstrated, suggesting its potential application in smart wearable electronics and future suits of soldiers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-powered versatile shoes based on hybrid nanogenerators

Show Author's information Long Liu1,2,§Wei Tang1,2,§Chaoran Deng1,2,§Baodong Chen1,2Kai Han1,2Wei Zhong1,2Zhong Lin Wang1,2,3( )
CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro-nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlanta, GA30332-0245USA

§ Long Liu, Wei Tang, and Chaoran Deng contributed equally to this work.

Abstract

A triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) were hybridized to harvest the human mechanical energy. By an effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator with a radius of 2 cm and height of 1.2 cm could charge a 1, 000 μF capacitor to 5.09 V after 100 cycles of vibration. This mini-sized hybrid nanogenerator could then be embedded in shoes to serve as an energy cell. Typical outdoor applications—including driving with a Global Positioning System (GPS) device, charging a Li-ion battery and a cell phone—were successfully demonstrated, suggesting its potential application in smart wearable electronics and future suits of soldiers.

Keywords: triboelectric nanogenerators, electromagnetic generators, hybrid nanogenerators

References(33)

1

Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

2

Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.

3

Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K. V.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

4

Cima, M. J. Next-generation wearable electronics. Nat. Biotechnol. 2014, 32, 642–643.

5

Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci. Adv. 2016, 2, e1601473.

6

Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

7

Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.

8

Jing, Q. S.; Xie, Y. N.; Zhu, G.; Han, R. P. S.; Wang, Z. L. Self-powered thin-film motion vector sensor. Nat. Commun. 2015, 6, 8031.

9

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

10

Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.

11

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

12

Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.

13

Wu, Y. C.; Zhong, X. D.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 2014, 7, 1631–1639.

14

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

15

Yang, Y.; Loomis, J.; Ghasemi, H.; Lee, S. W.; Wang, Y. J.; Cui, Y.; Chen, G. Membrane-free battery for harvesting low-grade thermal energy. Nano Lett. 2014, 14, 6578–6583.

16

Hinchet, R.; Kim, S. W. Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 2015, 9, 7742–7745.

17

Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272–276.

18

Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.; Wang, Z. L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203.

19

Zhang, H. L.; Xie, Y. H.; Li, X. M.; Huang, Z. L.; Zhang, S. J.; Su, Y. J.; Wu, B.; He, L.; Yang, W. Q.; Lin, Y. Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy 2016, 101, 202–210.

20

Quan, T.; Wang, X.; Wang, Z. L.; Yang, Y. Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 2015, 9, 12301–12310.

21

Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

22

Wang, X.; Yang, Y. Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy 2017, 32, 36–41.

23

Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.

24

Zhong, X. D.; Yang, Y.; Wang, X.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 2015, 13, 771–780.

25

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

26

Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

27

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

28

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

29

Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

30

Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.

31

Liu, L.; Tang, W.; Wang, Z. L. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators. Nanotechnology 2017, 28, 035405.

32

Li, H. Y.; Su, L.; Kuang, S. Y.; Pan, C. F.; Zhu, G.; Wang, Z. L. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv. Funct. Mater. 2015, 25, 5691–5697.

33

Jie, Y.; Wang, N.; Cao, X.; Xu, Y.; Li, T.; Zhang, X. J.; Wang, Z. L. Self-powered triboelectric nanosensor with poly (tetrafluoroethylene) nanoparticle arrays for dopamine detection. ACS Nano 2015, 9, 8376–8383.

Video
12274_2018_1978_MOESM1_ESM.avi
12274_2018_1978_MOESM2_ESM.avi
12274_2018_1978_MOESM3_ESM.avi
12274_2018_1978_MOESM5_ESM.avi
12274_2018_1978_MOESM6_ESM.avi
File
12274_2018_1978_MOESM7_ESM.pdf (474.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 November 2017
Revised: 27 December 2017
Accepted: 29 December 2017
Published: 09 February 2018
Issue date: August 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

The authors acknowledge the support from the National Key R & D Project from Ministry of Science and Technology (No. 2016YFA0202704), the National Natural Science Foundation of China (Nos. 51432005, 5151101243, and 51561145021), Beijing Municipal Science & Technology Commission (No. Y3993113DF), the "Thousands Talents" program for pioneer researcher, and their innovation team in China.

Return