Journal Home > Volume 11 , Issue 6

We present a facile and versatile method for introducing various non-precious metal nanoparticles (NPs) in small nanotubes, such as single-walled carbon nanotubes (SWNTs), including 3d-metals (V, Mn, Fe and Co), 4d-metals (Mo), and 5d-metals (W). This is realized by oxidizing encapsulated cycloalkene metal carbonyl complexes below their sublimation temperatures. This novel technique is significant because it avoids the diffusion and deposition of metal species on the outer walls of nanotubes, which has been challenging to achieve using the conventional filling methods. High-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and X-ray photoelectron spectroscopy (XPS) analyses revealed high filling efficiencies (> 95% SWNTs filled with metal NPs). This method also provides a unique approach to fabricate highly dispersed and uniform SWNT–metal nanoparticle encapsulates with lower valence states, which are often not stable in the bulk.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A versatile method for the encapsulation of various non-precious metal nanoparticles inside single-walled carbon nanotubes

Show Author's information Tingting Cui1,2Xiulian Pan1( )Jinhu Dong1,2Shu Miao1Dengyun Miao1Xinhe Bao1( )
State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
University of Chinese Academy of SciencesBeijing100049China

Abstract

We present a facile and versatile method for introducing various non-precious metal nanoparticles (NPs) in small nanotubes, such as single-walled carbon nanotubes (SWNTs), including 3d-metals (V, Mn, Fe and Co), 4d-metals (Mo), and 5d-metals (W). This is realized by oxidizing encapsulated cycloalkene metal carbonyl complexes below their sublimation temperatures. This novel technique is significant because it avoids the diffusion and deposition of metal species on the outer walls of nanotubes, which has been challenging to achieve using the conventional filling methods. High-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and X-ray photoelectron spectroscopy (XPS) analyses revealed high filling efficiencies (> 95% SWNTs filled with metal NPs). This method also provides a unique approach to fabricate highly dispersed and uniform SWNT–metal nanoparticle encapsulates with lower valence states, which are often not stable in the bulk.

Keywords: nanoparticles, encapsulation, confinement effect, single-walled carbon nanotubes, non-precious metals

References(78)

1

Monthioux, M.; Flahaut, E.; Cleuziou, J. P. Hybrid carbon nanotubes: Strategy, progress, and perspectives. J. Mater. Res. 2006, 21, 2774-2793.

2

Ilie, A.; Crampin, S.; Karlsson, L.; Wilson, M. Repair and stabilization in confined nanoscale systems—Inorganic nanowires within single-walled carbon nanotubes. Nano Res. 2012, 5, 833-844.

3

Shi, L.; Sheng, L. M.; Yu, L. M.; An, K.; Ando, Y.; Zhao, X. L. Ultra-thin double-walled carbon nanotubes: A novel nanocontainer for preparing atomic wires. Nano Res. 2011, 4, 759-766.

4

Kitaura, R.; Ogawa, D.; Kobayashi, K.; Saito, T.; Ohshima, S.; Nakamura, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High yield synthesis and characterization of the structural and magnetic properties of crystalline Ercl3 nanowires in single-walled carbon nanotube templates. Nano Res. 2008, 1, 152-157.

5

Pan, X. L.; Bao, X. H. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 2011, 44, 553-562.

6

Serp, P.; Castillejos, E. Catalysis in carbon nanotubes. Chemcatchem 2010, 2, 41-47.

7

Lota, G.; Frackowiak, E.; Mittal, J.; Monthioux, M. High performance supercapacitor from chromium oxide-nanotubes based electrodes. Chem. Phys. Lett. 2007, 434, 73-77.

8

Su, D. S.; Centi, G. A perspective on carbon materials for future energy application. J. Energy Chem. 2013, 22, 151-173.

9

Hatakeyama, R.; Li, Y. F. Synthesis and electronic-property control of Cs-encapsulated single- and double-walled carbon nanotubes by plasma ion irradiation. J. Appl. Phys. 2007, 102, 034309.

10

Sitharaman, B.; Kissell, K. R.; Hartman, K. B.; Tran, L. A.; Baikalov, A.; Rusakova, I.; Sun, Y.; Khant, H. A.; Ludtke, S. J.; Chiu, W. et al. Superparamagnetic gadonanotubes are high-performance mri contrast agents. Chem. Commun. 2005, 3915-3917.

11

Sithararnan, B.; Wilson, L. J. Gadonanotubes as new high-performance MRI contrast agents. Int. J. Nanomedicine 2006, 1, 291-295.

12

Britz, D. A.; Khlobystov, A. N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem. Soc. Rev. 2006, 35, 637-659.

13

Miners, S. A.; Rance, G. A.; Khlobystov, A. N. Chemical reactions confined within carbon nanotubes. Chem. Soc. Rev. 2016, 45, 4727-4746.

14

Botos, A.; Biskupek, J.; Chamberlain, T. W.; Rance, G. A.; Stoppiello, C. T.; Sloan, J.; Liu, Z.; Suenaga, K.; Kaiser, U.; Khlobystov, A. N. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: Sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J. Am. Chem. Soc. 2016, 138, 8175-8183.

15

Kharlamova, M. V.; Kramberger, C.; Saito, T.; Sato, Y.; Suenaga, K.; Pichler, T.; Shiozawa, H. Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale 2017, 9, 7998-8006.

16

Stoppiello, C. T.; Biskupek, J.; Li, Z. Y.; Rance, G. A.; Botos, A.; Fogarty, R. M.; Bourne, R. A.; Yuan, J.; Lovelock, K. R. J.; Thompson, P. et al. A one-pot-one-reactant synthesis of platinum compounds at the nanoscale. Nanoscale 2017, 9, 14385-14394.

17

Xiao, J. P.; Pan, X. L.; Zhang, F.; Li, H. B.; Bao, X. H. Size-dependence of carbon nanotube confinement in catalysis. Chem. Sci. 2017, 8, 278-283.

18

Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993, 362, 522-525.

19

Saito, Y.; Yoshikawa, T. Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 1993, 134, 154-156.

20

Seraphin, S.; Zhou, D.; Jiao, J.; Withers, J. C.; Loutfy, R. Yttrium carbide in nanotubes. Nature 1993, 362, 503.

21

Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372, 159-162.

22

Sloan, J.; Cook, J.; Green, M. L. H.; Hutchison, J. L.; Tenne, R. Crystallisation inside fullerene related structures. J. Mater. Chem. 1997, 7, 1089-1095.

23

Ugarte, D.; Stöckli, T.; Bonard, J. M.; Chatelain, A.; de Heer, W. A. Filling carbon nanotubes. Appl. Phys. A: Mater. Sci. Process 1998, 67, 101-105.

24

Pham-Huu, C.; Keller, N.; Estournes, C.; Ehret, G.; Ledoux, M. J. Synthesis of CoFe2O4 nanowire in carbon nanotubes. A new use of the confinement effect. Chem. Commun. 2002, 1882-1883.

25

Fröhlich, T.; Scharff, P.; Schliefke, W.; Romanus, H.; Gupta, V.; Siegmund, C.; Ambacher, O.; Spiess, L. Insertion of C60 into multi-wall carbon nanotubes—A synthesis of C60@mwcnt. Carbon 2004, 42, 2759-2762.

26

Kim, B. M.; Qian, S. Z.; Bau, H. H. Filling carbon nanotubes with particles. Nano Lett. 2005, 5, 873-878.

27

La Torre, A.; Rance, G. A.; El Harfi, J.; Li, J. N.; Irvine, D. J.; Brown, P. D.; Khlobystov, A. N. Transport and encapsulation of gold nanoparticles in carbon nanotubes. Nanoscale 2010, 2, 1006-1010.

28

Liao, G. M.; Pan, Y. Y.; Wu, Q.; Li, S. Y.; Weng, Y. Y.; Zhang, X. H.; Yang, Z. H.; Guo, J.; Chen, M. Z.; Tang, M. H. et al. A novel method to encapsulate a Au nanorod array in 15 nm radius multiwalled carbon nanotubes. Nanoscale 2014, 6, 14872-14876.

29

Sloan, J.; Hammer, J.; Zwiefka-Sibley, M.; Green, M. L. H.; Sloan, J. The opening and filling of single walled carbon nanotubes (SWTs). Chem. Commun. 1998, 347-348.

30

Sloan, J.; Wright, D. M.; Bailey, S.; Brown, G.; York, A. P. E.; Coleman, K. S.; Green, M. L. H.; Sloan, J.; Wright, D. M.; Hutchison, J. L. et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 1999, 699-700.

31

Govindaraj, A.; Satishkumar, B. C.; Nath, M.; Rao, C. N. R. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 2000, 12, 202-205.

32

Zhang, H. B.; Pan, X. L.; Bao, X. H. Facile filling of metal particles in small carbon nanotubes for catalysis. J. Energy Chem. 2013, 22, 251-256.

33

Mittal, J.; Monthioux, M.; Allouche, H.; Stephan, O. Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air. Chem. Phys. Lett. 2001, 339, 311-318.

34

Borowiak-Palen, E.; Bachmatiuk, A.; Rüemmeli, M. H.; Gemming, T.; Pichler, T.; Kalenczuk, R. J. Iron filled singlewalled carbon nanotubes—Synthesis and characteristic properties. Phys. Status Solidi B 2006, 243, 3277-3280.

35

Borowiak-Palen, E.; Mendoza, E.; Bachmatiuk, A.; Rummeli, M. H.; Gemming, T.; Nogues, J.; Skumryev, V.; Kalenczuk, R. J.; Pichler, T.; Silva, S. R. P. Iron filled single-wall carbon nanotubes—A novel ferromagnetic medium. Chem. Phys. Lett. 2006, 421, 129-133.

36

Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Suyetin, M.; Majouga, A. G.; Besley, E.; Kaiser, U.; Khlobystov, A. N. Investigation of the interactions and bonding between carbon and group viii metals at the atomic scale. Small 2016, 12, 1649-1657.

37

Loebick, C. Z.; Majewska, M.; Ren, F.; Haller, G. L.; Pfefferle, L. D. Fabrication of discrete nanosized cobalt particles encapsulated inside single-walled carbon nanotubes. J. Phys. Chem. C 2010, 114, 11092-11097.

38

Cleuziou, J. -P.; Wernsdorfer, W.; Ondarçuhu, T.; Monthioux, M. Electrical detection of individual magnetic nanoparticles encapsulated in carbon nanotubes. ACS Nano 2011, 5, 2348-2355.

39

Hao, J.; Lian, Y. F.; Guan, L. H.; Yue, D. M.; Guo, X. H.; Zhao, S. X.; Zhao, Y. L.; Ibrahim, K.; Wang, J. O.; Qian, H. J. et al. Supercritical synthesis and characterization of SWNT-based one dimensional nanomaterials. Nanoscale 2011, 3, 3103-3108.

40

Kharlamova, M. V.; Niu, J. J. New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett. 2012, 95, 314-319.

41

Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Shimamoto, D.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Synthesis and isolation of molybdenum atomic wires. Nano Lett. 2008, 8, 237-240.

42

Chamberlain, T. W.; Zoberbier, T.; Biskupek, J.; Botos, A.; Kaiser, U.; Khlobystov, A. N. Formation of uncapped nanometre-sized metal particles by decomposition of metal carbonyls in carbon nanotubes. Chem. Sci. 2012, 3, 1919-1924.

43

Zoberbier, T.; Chamberlain, T. W.; Biskupek, J.; Kuganathan, N.; Eyhusen, S.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale. J. Am. Chem. Soc. 2012, 134, 3073-3079.

44

Chamberlain, T. W.; Earley, J. H.; Anderson, D. P.; Khlobystov, A. N.; Bourne, R. A. Catalytic nanoreactors in continuous flow: Hydrogenation inside single-walled carbon nanotubes using supercritical CO2. Chem. Commun. 2014, 50, 5200-5202.

45

Sinitsa, A. S.; Chamberlain, T. W.; Zoberbier, T.; Lebedeva, I. V.; Popov, A. M.; Knizhnik, A. A.; McSweeney, R. L.; Biskupek, J.; Kaiser, U.; Khlobystov, A. N. Formation of nickel clusters wrapped in carbon cages: Toward new endohedral metallofullerene synthesis. Nano Lett. 2017, 17, 1082-1089.

46

Li, Y. F.; Hatakeyama, R.; Kaneko, T.; Izumida, T.; Okada, T.; Kato, T. Synthesis and electronic properties of ferrocene-filled double-walled carbon nanotubes. Nanotechnology 2006, 17, 4143-4147.

47

Shiozawa, H.; Pichler, T.; Grüneis, A.; Pfeiffer, R.; Kuzmany, H.; Liu, Z.; Suenaga, K.; Kataura, H. A catalytic reaction inside a single-walled carbon nanotube. Adv. Mater. 2008, 20, 1443-1449.

48

Briones-Leon, A.; Ayala, P.; Liu, X. J.; Yanagi, K.; Weschke, E.; Eisterer, M.; Jiang, H.; Kataura, H.; Pichler, T.; Shiozawa, H. Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Phys. Rev. B 2013, 87, 195435.

49

McSweeney, R. L.; Chamberlain, T. W.; Davies, E. S.; Khlobystov, A. N. Single-walled carbon nanotubes as nano-electrode and nano-reactor to control the pathways of a redox reaction. Chem. Commun. 2014, 50, 14338-14340.

50

Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 2001, 105, 8297-8301.

51

Ziegler, K. J.; Gu, Z. N.; Peng, H. Q.; Flor, E. L.; Hauge, R. H.; Smalley, R. E. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 1541-1547.

52

Smith, B. W.; Luzzi, D. E. Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis. Chem. Phys. Lett. 2000, 321, 169-174.

53

Li, Y. F.; Hatakeyama, R.; Shishido, J.; Kato, T.; Kaneko, T. Air-stable p-n junction diodes based on single-walled carbon nanotubes encapsulating Fe nanoparticles. Appl. Phys. Lett. 2007, 90, 173127.

54

Chen, W.; Pan, X. L.; Bao, X. H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 7421-7426.

55

Chen, W.; Fan, Z. L.; Zhang, B.; Ma, G. J.; Takanabe, K.; Zhang, X. X.; Lai, Z. P. Enhanced visible-light activity of titania via confinement inside carbon nanotubes. J. Am. Chem. Soc. 2011, 133, 14896-14899.

56

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47-99.

57

Kumari, L.; Ma, Y. -R.; Tsai, C. -C.; Lin, Y. -W.; Wu, S. Y.; Cheng, K. -W.; Liou, Y. X-ray diffraction and Raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods. Nanotechnology 2007, 18, 115717.

58

Fukata, N.; Oshima, T.; Murakami, K.; Kizuka, T.; Tsurui, T.; Ito, S. Phonon confinement effect of silicon nanowires synthesized by laser ablation. Appl. Phys. Lett. 2005, 86, 213112.

59

Parker, J. C.; Siegel, R. W. Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. J. Mater. Res. 1990, 5, 1246-1252.

60

Xiao, J. P.; Pan, X. L.; Guo, S. J.; Ren, P. J.; Bao, X. H. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 477-482.

61

McIntyre, N. S.; Johnston, D. D.; Coatsworth, L. L.; Davidson, R. D.; Brown, J. R. X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum. Surf. Interface Anal. 1990, 15, 265-272.

62

López-Carreño, L. D.; Benı́tez, G.; Viscido, L.; Heras, J. M.; Yubero, F.; Espinós, J. P.; González-Elipe, A. R. Different oxidation states of polycrystalline molybdenum treated by O2-plasma or O2-ion bombardment. Surf. Sci. 1998, 402-404, 174-177.

63

Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717-2730.

64

Yue, C. C.; Zhu, X. C.; Rigutto, M.; Hensen, E. Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Appl. Catal. B: Environ. 2015, 163, 370-381.

65

Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron. Spectrosc. Relat. Phenom. 2004, 135, 167-175.

66

Peña, D. A.; Uphade, B. S.; Smirniotis, P. G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. J. Catal. 2004, 221, 421-431.

67

Lin, T. -C.; Seshadri, G.; Kelber, J. A. A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl. Surf. Sci. 1997, 119, 83-92.

68

Long, M. C.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 2006, 110, 20211-20216.

69

Morales, F.; de Groot, F. M. F.; Gijzeman, O. L. J.; Mens, A.; Stephan, O.; Weckhuysen, B. M. Mn promotion effects in Co/TiO2 fischer-tropsch catalysts as investigated by xps and STEM-EELS. J. Catal. 2005, 230, 301-308.

70

Zhang, F.; Pan, X. L.; Hu, Y. F.; Yu, L.; Chen, X. Q.; Jiang, P.; Zhang, H. B.; Deng, S. B.; Zhang, J.; Bolin, T. B. et al. Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2013, 110, 14861-14866.

71

Chen, W. F.; Wang, C. H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. Energy Environ. Sci. 2013, 6, 943-951.

72

Youn, D. H.; Han, S.; Kim, J. Y.; Kim, J. Y.; Park, H.; Choi, S. H.; Lee, J. S. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support. ACS Nano 2014, 8, 5164-5173.

73

Šljukić, B.; Vujković, M.; Amaral, L.; Santos, D. M. F.; Rocha, R. P.; Sequeira, C. A. C.; Figueiredo, J. L. Carbon-supported Mo2C electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 15505-15512.

74

Shi, L.; Rohringer, P.; Suenaga, K.; Niimi, Y.; Kotakoski, J.; Meyer, J. C.; Peterlik, H.; Wanko, M.; Cahangirov, S.; Rubio, A. et al. Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 2016, 15, 634-639.

75

Yang, F. K.; Sliozberg, K.; Antoni, H.; Xia, W.; Muhler, M. MoxC/CNT composites as active electrocatalysts for the hydrogen evolution reaction under alkaline conditions. Electroanalysis 2016, 28, 2293-2296.

76

McIntyre, N. S.; Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1977, 49, 1521-1529.

77

Karim, A. M.; Su, Y.; Engelhard, M. H.; King, D. L.; Wang, Y. Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts. ACS Catal. 2011, 1, 279-286.

78

Turchanin, M. A.; Agraval, P. G. Cohesive energy, properties, and formation energy of transition metal alloys. Powder Metall. Met. Ceram. 2008, 47, 26-39.

File
12274_2018_1975_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 October 2017
Revised: 22 December 2017
Accepted: 28 December 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (No. 2016YFA0202803), and the National Natural Science Foundation of China (Nos. 21425312 and 21621063). We thank Dr. Haobo Li for help in drawing the scheme and Dr. Tie Yu for fruitful discussions.

Return