Journal Home > Volume 11 , Issue 7

The engineering of self-organized plasmonic metasurfaces is demonstrated using a maskless technique with defocused ion-beam sputtering and kinetically controlled deposition. The proposed reliable, cost-effective, and controllable approach enables large-area (order of square centimeter) sub-wavelength periodic patterning with close-packed gold nanostrips. A multi-level variant of the method leads to high-resolution manufacturing of vertically stacked nanostrip dimer arrays, without resorting to lithographic approaches. The design of these self-organized metasurfaces is optimized by employing plasmon hybridization methods. In particular, preliminary results on the so-called gap-plasmon configuration of the nanostrip dimers, implementing magnetic dipole resonance in the near-infrared range, are reported. This resonance offers a superior sensitivity and field enhancement, compared with the more conventional electric dipole resonance. The translational invariance of the nanostrip configuration leads to a high filling factor of the hot spots. These advanced features make the large-area metasurface based on gap-plasmon nanostrip dimers very attractive for surface-enhanced linear and nonlinear spectroscopy (e.g., surface-enhanced Raman scattering) and plasmon-enhanced photon harvesting in solar and photovoltaic cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Plasmon hybridization engineering in self-organized anisotropic metasurfaces

Show Author's information Maria C. Giordano1,Stefano Longhi2Matteo Barelli1Andrea Mazzanti2Francesco Buatier de Mongeot1( )Giuseppe Della Valle2( )
Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, I-16146Italy
Dipartimento di Fisica and IFN-CNRPolitecnico di Milano, Piazza L. da Vinci 32, Milano, I-20133Italy

Present address: CNR – NANO, Laboratorio NEST, Piazza San Silvestro, Pisa I-56127, Italy

Abstract

The engineering of self-organized plasmonic metasurfaces is demonstrated using a maskless technique with defocused ion-beam sputtering and kinetically controlled deposition. The proposed reliable, cost-effective, and controllable approach enables large-area (order of square centimeter) sub-wavelength periodic patterning with close-packed gold nanostrips. A multi-level variant of the method leads to high-resolution manufacturing of vertically stacked nanostrip dimer arrays, without resorting to lithographic approaches. The design of these self-organized metasurfaces is optimized by employing plasmon hybridization methods. In particular, preliminary results on the so-called gap-plasmon configuration of the nanostrip dimers, implementing magnetic dipole resonance in the near-infrared range, are reported. This resonance offers a superior sensitivity and field enhancement, compared with the more conventional electric dipole resonance. The translational invariance of the nanostrip configuration leads to a high filling factor of the hot spots. These advanced features make the large-area metasurface based on gap-plasmon nanostrip dimers very attractive for surface-enhanced linear and nonlinear spectroscopy (e.g., surface-enhanced Raman scattering) and plasmon-enhanced photon harvesting in solar and photovoltaic cells.

Keywords: gold nanostructures, metasurfaces, self-organization, plasmon hybridization, gap plasmon resonances

References(64)

1

Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540.

2

Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-Enhanced Raman Scattering: Physics and Applications; Springer: Berlin, Heidelberg, 2006.

DOI
3

Fazio, B.; D'Andrea, C.; Bonaccorso, F.; Irrera, A.; Calogero, G.; Vasi, C.; Gucciardi, P. G.; Allegrini, M.; Toma, A.; Chiappe, D. et al. Re-radiation enhance ment in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires ACS Nano 2011, 5, 5945–5956.

4

Xie, J. P.; Zhang, Q. B.; Lee, J. Y.; Wang, D. I. C. The synthesis of sers-active gold nanoflower tags for in vivo applications. ACS Nano 2008, 2, 2473–2480.

5

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; van Duyne, R. P. Biosensing with plasmonic nanosensors. Nature 2008, 7, 442–453.

6

Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204.

7

Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

8

Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with active optical antennas. Science 2011, 332, 702–704.

9

Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Planar photonics with metasurfaces. Science 2013, 339, 1232009.

10

Yu, N. F.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150.

11

Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194.

12

Zhang, Y.; Zhen, Y. R.; Neumann, O.; Day, J. K.; Nordlander, P.; Halas, N. J. Coherent anti-stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Comm. 2014, 5, 4424.

13

Pors, A.; Nielsen, M. G.; Bozhevolnyi, S. I. Analog computing using reflective plasmonic metasurfaces. Nano Lett. 2015, 15, 791–797.

14

Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 2000, 164, 111–117.

15

Koh, A. L.; Fernández-Domínguez, A. I.; McComb, D. W.; Maier, S. A.; Yang, J. K. W. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett. 2011, 11, 1323–1330.

16

Near, R.; Tabor, C.; Duan, J. S.; Pachter, R.; El-Sayed, M. Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. Nano Lett. 2012, 12, 2158–2164.

17

Acimovic, S. S.; Kreuzer, M. P.; González, M. U.; Quidant, R. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 2009, 3, 1231–1237.

18

Verslegers, L.; Catrysse, P. B.; Yu, Z. F.; White, J. S.; Barnard, E. S.; Brongersma, M. L.; Fan, S. H. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 2009, 9, 235–238.

19

Novotny, L.; van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90.

20

Han, G.; Weber, D.; Neubrech, F.; Yamada, I.; Mitome, M.; Bando, Y.; Pucci, A.; Nagao, T. Infrared spectroscopic and electron microscopic characterization of gold nanogap structure fabricated by focused ion beam. Nanotechnology 2011, 22, 275202.

21

Ng, C.; Cadusch, J. J.; Dligatch, S.; Roberts, A.; Davis, T. J.; Mulvaney, P.; Gómez, D. E. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano 2016, 10, 4704–4711.

22

Kasera, S.; Herrmann, L. O.; del Barrio, J.; Baumberg, J. J.; Scherman, O. A. Quantitative multiplexing with nano-selfassemblies in SERS. Sci. Rep. 2014, 4, 6785.

23

Gwo, S.; Wang, C. Y.; Chen, H. Y.; Lin, M. H.; Sun, L. Y.; Li, X. Q.; Chen, W. L.; Chang, Y. M.; Ahn, H. Plasmonic metasurfaces for nonlinear optics and quantitative SERS. ACS Photonics 2016, 3, 1371–1384.

24

Zhao, X. M.; Xia, Y. N.; Whitesides, G. M. Soft lithographic methods for nano-fabrication. J. Mater. Chem. 1997, 7, 1069–1074.

25

Xia, Y. N.; Whitesides, G. M. Soft lithography. Angew. Chem., Int. Ed. 1998, 37, 550–575.

26

Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.

27

Boltasseva, A. Plasmonic components fabrication via nanoimprint. J. Opt. A: Pure Appl. Opt. 2009, 11, 114001.

28

Menke, E. J.; Thomson, M. A.; Xiang, C.; Yang, L. C.; Penner, R. M. Lithographically patterned nanowire electrodeposition. Nat. Mater. 2006, 5, 914–919.

29

Verre, R.; Fleischer, K.; Ualibek, O.; Shvets, I. V. Selfassembled broadband plasmonic nanoparticle arrays for sensing applications. Appl. Phys. Lett. 2012, 100, 031102.

30

Thomas, K. G.; Barazzouk, S.; Ipe, B. I.; Shibu Joseph, S. T.; Kamat, P. V. Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B 2004, 108, 13066–13068.

31

González-Díaz, J. B.; García-Martín, A.; García-Martín, J. M.; Cebollada, A.; Armelles, G.; Sepúlveda, B.; Alaverdyan, Y.; Käll, M. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 2008, 4, 202–205.

32

Hung, A. M.; Micheel, C. M.; Bozano, L. D.; Osterbur, L. W.; Wallraff, G. M.; Cha, J. N. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat. Nano 2010, 5, 121–126.

33

Dmitriev, A.; Pakizeh, T.; Käll, M.; Sutherland, D. S. Gold-silica-gold nanosandwiches: Tunable bimodal plasmonic resonators. Small 2007, 3, 294–299.

34

Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678–2685.

35

Wang, P. Y.; Shields IV, C. W.; Zhao, T. H.; Jami, H.; López, G. P.; Kingshott, P. Rapid self-assembly of shaped microtiles into large, close-packed crystalline monolayers on solid surfaces. Small 2016, 12, 1309–1314.

36

Robbiano, V.; Giordano, M.; Martella, C.; Di Stasio, F.; Chiappe, D.; Buatier de Mongeot, F.; Comoretto, D. Hybrid plasmonic–photonic nanostructures: Gold nanocrescents over opals. Adv. Opt. Mater. 2013, 1, 389–396.

37

Toma, A.; Chiappe, D.; Massabo, D.; Boragno, C.; Buatier de Mongeot, F. Self-organized metal nanowire arrays with tunable optical anisotropy. Appl. Phys. Lett. 2008, 93, 163104.

38

Choi, D.; Choi, Y.; Hong, S.; Kang, T.; Lee, L. P. Selforganized hexagonal-nanopore SERS array. Small 2010, 6, 1741–1744.

39

Mishra, Y. K.; Adelung, R.; Kumar, G.; Elbahri, M.; Mohapatra, S.; Singhal, R.; Avasthi, D. K. Formation of self-organized silver nanocup-type structures and their plasmonic absorption. Plasmonics 2013, 8, 811–815.

40

Fan, J. A.; Wu, C.; Bao, K.; Bao, J. M.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Nordlander, P.; Shvets, G.; Capasso, F. Self-assembled plasmonic nanoparticle clusters. Science 2010, 328, 1135–1138.

41

Fan, J. A.; Bao, K.; Sun, L.; Bao, J. M.; Manoharan, V. N.; Nordlander, P.; Capasso, F. Plasmonic mode engineering with templated self-assembled nanoclusters. Nano Lett. 2012, 12, 5318–5324.

42

Natelson, D. Nanofabrication: Best of both worlds. Nat. Mater. 2006, 5, 853–854.

43

D'Andrea, C.; Fazio, B.; Gucciardi, P. G.; Giordano, M. C.; Martella, C.; Chiappe, D.; Toma, A.; Buatier de Mongeot, F.; Tantussi, F.; Vasanthakumar, P. et al. SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering. J. Phys. Chem. C 2014, 118, 8571–8580.

44

Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M. C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; Buatier de Mongeot, F. Self-organized plasmonic metasurfaces for all-optical modulation. Phys. Rev. B 2015, 91, 235440.

45

Belardini, A.; Larciprete, M. C.; Centini, M.; Fazio, E.; Sibilia, C.; Chiappe, D.; Martella, C.; Toma, A.; Giordano, M. C.; Buatier de Mongeot, F. Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Phys. Rev. Lett. 2011, 107, 257401.

46

Giordano, M. C.; Repetto, D.; Mennucci, C.; Carrara, A.; Buatier de Mongeot, F. Template-assisted growth of transparent plasmonic nanowire electrodes. Nanotechnology 2016, 27, 495201.

47

Belardini, A.; Pannone, F; Leahu1, G.; Larciprete, M. C.; Centini, M.; Sibilia, C.; Martella, C.; Giordano, M.; Chiappe, D.; Buatier de Mongeot, F. Evidence of anomalous refraction of self-assembled curved gold nanowires. Appl. Phys. Lett. 2012, 100, 251109.

48

Miyazaki, H.; Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long Plasmon cavity. Phys. Rev. Lett. 2006, 96, 097401.

49

Yuan, H. -K.; Chettiar, U. K.; Cai, W. S.; Kildishev, A. V.; Boltasseva, A.; Drachev, V. P.; Shalaev, V. M. A negative permeability material at red light. Opt. Express 2007, 15, 1076–1083.

50

Søndergaard, T.; Jung, J.; Bozhevolnyi, S. I.; Della Valle, G. Theoretical analysis of gold nano-strip gap plasmon resonators. New J. Phys. 2008, 10, 105008.

51

Pors, A.; Bozhevolnyi, S. I. Plasmonic metasurfaces for efficient phase control in reflection. Opt. Express 2013, 21, 27438–27451.

52

Miyata, M.; Holsteen, A.; Nagasaki, Y.; Brongersma, M. L.; Takahara, J. Gap plasmon resonance in a suspended plasmonic nanowire coupled to a metallic substrate. Nano Lett. 2015, 15, 5609–5616.

53

Raza, S.; Stenger, N.; Pors, A.; Holmgaard, T.; Kadkhodazadeh, S.; Wagner, J. B.; Pedersen, K.; Wubs, M.; Bozhevolnyi, S. I.; Asger Mortensen, N. Extremely confined gap surfaceplasmon modes excited by electrons. Nat. Common. 2014, 5, 4125.

54

Guerrisi, M.; Rosei, R.; Winsemius, P. Splitting of the interband absorption edge in Au. Phys. Rev. B 1975, 12, 557–563.

55

Liao, Y. L.; Zhao, Y. Design of wire-grid polarizer with effective medium theory. Opt. Quantum Electron. 2014, 46, 641–647.

56

Della Valle, G.; Søndergaard, T.; Bozhevolnyi, S. I. Plasmon-polariton nano-strip resonators: From visible to infra-red. Opt. Express 2008, 16, 6867–6876.

57

Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

58

Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. Plasmonic nanostructures: Artificial molecules. Acc. Chem. Res. 2007, 40, 53–62.

59

Davis, T. J.; Vernon, K. C.; Gómez, D. E. Designing plasmonic systems using optical coupling between nanoparticles. Phys. Rev. B 2009, 79, 155423.

60

Davis, T. J.; Gómez, D. E.; Vernon, K. C. Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. Nano Lett. 2010, 10, 2618–2625.

61

Neubrech, F.; Kolb, T.; Lovrincic, R.; Fahsold, G.; Pucci, A.; Aizpurua, J.; Cornelius, T. W.; Toimil-Molares, M. E.; Neumann, R.; Karim, S. Resonances of individual metal nanowires in the infrared. Appl. Phys. Lett. 2006, 89, 253104.

62

Nielsen, M. G.; Pors, A.; Nielsen, R. B.; Boltasseva, A.; Albrektsen, O.; Bozhevolnyi, S. I. Demonstration of scattering suppression in retardation-based plasmonic nanoantennas. Opt. Express 2010, 18, 14802–14811.

63

Kim, J.; Dutta, A.; Naik, G. V.; Giles, A. J.; Bezares, F. J.; Ellis, C. T.; Tischler, J. G.; Mahmoud, A. M.; Caglayan, H.; Glembocki, O. J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 2016, 3, 339–346.

64

Qin, F.; Cui, X. M.; Ruan, Q. F.; Lai, Y. H.; Wang, J. F.; Ma, H. G.; Linc, H. -Q. Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals. Nanoscale 2016, 8, 17645–17657.

File
12274_2018_1974_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2017
Revised: 13 December 2017
Accepted: 28 December 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support by the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) through the PRIN 2015 Grant No. 015WTW7J3. F. Buatier de Mongeot acknowledges the support by the Compagnia di San Paolo through the Project ID ROL 9361 and by the MAECI through the Italy-Egypt bilateral protocol. F. Buatier de Mongeot and G. Della Valle acknowledge the COST Action MP1302-NanoSpectroscopy.

Return