Journal Home > Volume 11 , Issue 7

Novel thin and flexible broadband electromagnetic microwave absorbers are realized with nanocomposites and achieve a wide frequency tunability (from 10 to 17.2 GHz) by actively adjusting the resistance. The proposed absorbers are fabricated by scalable screen printing of optimized nanoparticle ink onto the flexible dielectric composite substrates. Based on the shape memory effects of the substrate and piezoresistive effect of the nanocomposite frequency selective surface, a controllable sheet resistance, and thereby tunable wave absorption performance, can be realized in a temperature-activated and dynamically stable manner. The results provide new dimensions for the design of active electromagnetic devices by utilizing previously underestimated intrinsic properties of the artificial materials and the smart behavior of polymer-based nanocomposites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A temperature-activated nanocomposite metamaterial absorber with a wide tunability

Show Author's information Weiwei Li1,2,§Lingyu Zhao1,2,§Zhaohe Dai1Hao Jin1( )Feng Duan1,2Junchao Liu1,2Zhihui Zeng1Jun Zhao1( )Zhong Zhang1( )
CAS Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
University of Chinese Academy of SciencesBeijing100149China

§Weiwei Li and Lingyu Zhao contributed equally to this work.

Abstract

Novel thin and flexible broadband electromagnetic microwave absorbers are realized with nanocomposites and achieve a wide frequency tunability (from 10 to 17.2 GHz) by actively adjusting the resistance. The proposed absorbers are fabricated by scalable screen printing of optimized nanoparticle ink onto the flexible dielectric composite substrates. Based on the shape memory effects of the substrate and piezoresistive effect of the nanocomposite frequency selective surface, a controllable sheet resistance, and thereby tunable wave absorption performance, can be realized in a temperature-activated and dynamically stable manner. The results provide new dimensions for the design of active electromagnetic devices by utilizing previously underestimated intrinsic properties of the artificial materials and the smart behavior of polymer-based nanocomposites.

Keywords: composite materials, flexible electronics, metamaterials, polymeric materials, shape memory polymers

References(44)

1

Choi, W. -H.; Kim, J. -B.; Shin, J. -H.; Song, T. -H.; Lee, W. -J.; Joo, Y. -S.; Kim, C. -G. Circuit-analog (CA) type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication. Compos. Sci. Technol. 2014, 105, 96–101.

2

Namai, A.; Sakurai, S.; Nakajima, M.; Suemoto, T.; Matsumoto, K.; Goto, M.; Sasaki, S.; Ohkoshi, S. -I. Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J. Am. Chem. Soc. 2009, 131, 1170–1173.

3

Wang, H.; Kong, P.; Cheng, W. T.; Bao, W. Z.; Yu, X. W.; Miao, L.; Jiang, J. J. Broadband tunability of polarization-insensitive absorber based on frequency selective surface. Sci. Rep. 2016, 6, 23081.

4

Pang, Y. Q.; Cheng, H. F.; Zhou, Y. J.; Wang, J. Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces. J. Phys. D: Appl. Phys. 2012, 45, 215104.

5

Costa, F.; Monorchio, A.; Manara, G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 1551–1558.

6

Ding, F.; Cui, Y. X.; Ge, X. C.; Jin, Y.; He, S. L. Ultrabroadband microwave metamaterial absorber. Appl. Phys. Lett. 2012, 100, 103506.

7

Park, J. W.; Van Tuong, P.; Rhee, J. Y.; Kim, K. W.; Jang, W. H.; Choi, E. H.; Chen, L. Y.; Lee, Y. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 2013, 21, 9691–9702.

8

Xiong, H.; Hong, J. -S.; Luo, C. -M.; Zhong, L. -L. An ultrathin and broadband metamaterial absorber using multi-layer structures. J. Appl. Phys. 2013, 114, 064109.

9

Ghosh, S.; Bhattacharyya, S.; Kaiprath, Y.; Srivastava, K. V. Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 2014, 115, 104503.

10

Landy, N. I.; Sajuyigbe, S.; Mock, J. J.; Smith, D. R.; Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402.

11

Watts, C. M.; Liu, X. L.; Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120.

12

Wen, Q. Y.; Zhang, H. W.; Yang, Q. H.; Chen, Z.; Long, Y.; Jing, Y. L.; Lin, Y.; Zhang, P. X. A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D: Appl. Phys. 2012, 45, 235106.

13

Kong, P.; Yu, X. W.; Liu, Z. Y.; Zhou, K.; He, Y.; Miao, L.; Jiang, J. J. A novel tunable frequency selective surface absorber with dual-DOF for broadband applications. Opt Express 2014, 22, 30217–30224.

14

Li, S. J.; Gao, J.; Cao, X. Y.; Li, W. Q.; Zhang, Z.; Zhang, D. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. J. Appl. Phys. 2014, 116, 043710.

15

Huang, X. J.; He, X. L.; Guo, L. Y.; Yi, Y. Y.; Xiao, B. X.; Yang, H. L. Analysis of ultra-broadband metamaterial absorber based on simplified multi-reflection interference theory. J. Opt. 2015, 17, 055101.

16

Ling, K. Y.; Yoo, M.; Lim, S. Frequency tunable metamaterial absorber using hygroscopicity of nature cork. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1598–1601.

17

Huang, Y. J.; Wen, G. J.; Zhu, W. R.; Li, J.; Si, L. -M.; Premaratne, M. Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber. Opt. Express 2014, 22, 16408–16417.

18

Liu, Q.; Liu, L. Q.; Xie, K.; Meng, Y. N.; Wu, H. P.; Wang, G. R.; Dai, Z. H.; Wei, Z. X.; Zhang, Z. Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. J. Mater. Chem. A 2015, 3, 8380–8388.

19

Kuang, J.; Dai, Z. H.; Liu, L. Q.; Yang, Z.; Jin, M.; Zhang, Z. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale 2015, 7, 9252–9260.

20

Lv, T.; Cheng, Z. J.; Zhang, D. J.; Zhang, E. S.; Zhao, Q. L.; Liu, Y. Y.; Jiang, L. Superhydrophobic surface with shape memory micro/nanostructure and its application in rewritable chip for droplet storage. ACS Nano 2016, 10, 9379–9386.

21

Dai, Z. H.; Gao, Y.; Liu, L. Q.; Pötschke, P.; Yang, J. L.; Zhang, Z. Creep-resistant behavior of MWCNT-polycarbonate melt spun nanocomposite fibers at elevated temperature. Polymer 2013, 54, 3723–3729.

22

Dai, Z. H.; Liu, L. Q.; Qi, X. Y.; Kuang, J.; Wei, Y. G.; Zhu, H. W.; Zhang, Z. Three-dimensional sponges with super mechanical stability: Harnessing true elasticity of individual carbon nanotubes in macroscopic architectures. Sci. Rep. 2016, 6, 18930.

23

Dai, Z. H.; Weng, C. X.; Liu, L. Q.; Hou, Y.; Zhao, X. L.; Kuang, J.; Shi, J. D.; Wei, Y. G.; Lou, J.; Zhang, Z. Multifunctional polymer-based graphene foams with buckled structure and negative poisson's ratio. Sci. Rep. 2016, 6, 32989.

24

Baughman, R. H.; Cui, C. X.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G. et al. Carbon nanotube actuators. Science 1999, 284, 1340–1344.

25

Dai, Z. H.; Wang, Y. L.; Liu, L. Q.; Liu, X. L.; Tan, P. H.; Xu, Z. P.; Kuang, J.; Liu, Q.; Lou, J.; Zhang, Z. Hierarchical graphene-based films with dynamic self-stiffening for biomimetic artificial muscle. Adv. Funct. Mater. 2016, 26, 7003–7010.

26

Dai, Z. H.; Wang, G. R.; Liu, L. Q.; Hou, Y.; Wei, Y. G.; Zhang, Z. Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces. Compos. Sci. Technol. 2016, 136, 1–9.

27

Wang, G. R.; Dai, Z. H.; Liu, L. Q.; Hu, H.; Dai, Q.; Zhang, Z. Tuning the interfacial mechanical behaviors of monolayer graphene/PMMA nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 22554–22562.

28

Gall, K.; Dunn, M. L.; Liu, Y. P.; Finch, D.; Lake, M.; Munshi, N. A. Shape memory polymer nanocomposites. Acta Mater. 2002, 50, 5115–5126.

29

Xu, H. X.; Yu, C. J.; Wang, S. D.; Malyarchuk, V.; Xie, T.; Rogers, J. A. Deformable, programmable, and shapememorizing micro-optics. Adv. Funct. Mater. 2013, 23, 3299–3306.

30

Fang, Y.; Ni, Y. L.; Leo, S. -Y.; Taylor, C.; Basile, V.; Jiang, P. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nat. Commun. 2015, 6, 7416.

31

Zhang, F. L.; Feng, S. Q.; Qiu, K. P.; Liu, Z. J.; Fan, Y. C.; Zhang, W. H.; Zhao, Q.; Zhou, J. Mechanically stretchable and tunable metamaterial absorber. Appl. Phys. Lett. 2015, 106, 091907.

32

Yang, S. M.; Liu, P.; Yang, M. D.; Wang, Q. G.; Song, J. M.; Dong, L. From flexible and stretchable meta-atom to metamaterial: A wearable microwave meta-skin with tunable frequency selective and cloaking effects. Sci. Rep. 2016, 6, 21921.

33

Zhao, L. Y.; Zhao, J.; Liu, Y. Y.; Guo, Y. F.; Zhang, L. P.; Chen, Z.; Zhang, H.; Zhang, Z. Continuously tunable wettability by using surface patterned shape memory polymers with giant deformability. Small 2016, 12, 3327–3333.

34

Inui, T.; Koga, H.; Nogi, M.; Komoda, N.; Suganuma, K. A Miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv. Mater. 2015, 27, 1112–1116.

35

Qing, Y. C.; Min, D. D.; Zhou, Y. Y.; Luo, F.; Zhou, W. C. Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and widebandwidth microwave absorber. Carbon 2015, 86, 98–107.

36

Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.

37

Kim, K.; Lee, D.; Eom, S.; Lim, S. Stretchable metamaterial absorber using liquid metal-filled polydimethylsiloxane (PDMS). Sensors 2016, 16, 521.

38

Fusco, V. F.; Cahill, R.; Hu, W.; Simms, S. Ultra-thin tunable microwave absorber using liquid crystals. Electron. Lett. 2008, 44, 37–38.

39

Ling, K. Y.; Yoo, M.; Su, W. J.; Kim, K.; Cook, B.; Tentzeris, M. M.; Lim, S. Microfluidic tunable inkjet-printed metamaterial absorber on paper. Opt. Express 2015, 23, 110–120.

40

Silva, M. W. B.; Campos, A. L. P. S.; Kretly, L. C. Design of thin microwave absorbers using lossy frequency selective surfaces. Microwave Opt. Technol. Lett. 2015, 57, 928–933.

41

Wang, B.; Gong, B. Y.; Wang, M.; Weng, B.; Zhao, X. P. Dendritic wideband metamaterial absorber based on resistance film. Appl. Phys. A 2015, 118, 1559–1563.

42

Jang, H. -K.; Choi, W. -H.; Kim, C. -G.; Kim, J. -B.; Lim, D. -W. Manufacture and characterization of stealth wind turbine blade with periodic pattern surface for reducing radar interference. Composites Part B 2014, 56, 178–183.

43

Pang, Y. -Q.; Zhou, Y. -J.; Wang, J. Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers. J. Appl. Phys. 2011, 110, 023704.

44

Zhang, G. R.; Zhou, P. H.; Zhang, H. B.; Zhang, L. B.; Xie, J. L.; Deng, L. J. Analysis and design of triple-band high-impedance surface absorber with periodic diversified impedance. J. Appl. Phys. 2013, 114, 164103.

File
12274_2018_1973_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 May 2017
Revised: 15 December 2017
Accepted: 28 December 2017
Published: 19 January 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This project was jointly supported by the National Basic Research Program of China (No. 2013CB934203), the "Strategic Priority Research Program" of the Chinese Academy of Sciences (No. XDA09030200), and the National Natural Science Foundation of China (No. 11225210).

Return