AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Versatile multiplexed super-resolution imaging of nanostructures by Quencher-Exchange-PAINT

Tobias Lutz1Alexander H. Clowsley1Ruisheng Lin1Stefano Pagliara1Lorenzo Di Michele2Christian Soeller1( )
Living Systems Institute & Biomedical PhysicsUniversity of Exeter, Exeter, EX4 4QDUK
Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HEUK
Show Author Information

Graphical Abstract

Abstract

The optical super-resolution technique DNA-PAINT (Point Accumulation Imaging in Nanoscale Topography) provides a flexible way to achieve imaging of nanoscale structures at ~10-nanometer resolution. In DNA-PAINT, fluorescently labeled DNA "imager" strands bind transiently and with high specificity to complementary target "docking" strands anchored to the structure of interest. The localization of single binding events enables the assembly of a super-resolution image, and this approach effectively circumvents photobleaching. The solution exchange of imager strands is the basis of Exchange-PAINT, which enables multiplexed imaging that avoids chromatic aberrations. Fluid exchange during imaging typically requires specialized chambers or washes, which can disturb the sample. Additionally, diffusional washout of imager strands is slow in thick samples such as biological tissue slices. Here, we introduce Quencher-Exchange-PAINT—a new approach to Exchange-PAINT in regular open-top imaging chambers—which overcomes the comparatively slow imager strand switching via diffusional imager washout. Quencher-Exchange-PAINT uses "quencher" strands, i.e., oligonucleotides that prevent the imager from binding to the targets, to rapidly reduce unwanted single-stranded imager concentrations to negligible levels, decoupled from the absolute imager concentration. The quencher strands contain an effective dye quencher that reduces the fluorescence of quenched imager strands to negligible levels. We characterized Quencher-Exchange-PAINT when applied to synthetic, cellular, and thick tissue samples. Quencher-Exchange-PAINT opens the way for efficient multiplexed imaging of complex nanostructures, e.g., in thick tissues, without the need for washing steps.

Electronic Supplementary Material

Download File(s)
12274_2018_1971_MOESM1_ESM.pdf (703.7 KB)

References

1

Huang, B.; Bates, M.; Zhuang, X. W. Super resolution fluorescence microscopy. Annu. Rev. Biochem. 2009, 78, 993–1016.

2

Hell, S. W. Microscopy and its focal switch. Nat. Methods 2009, 6, 24–32.

3

Bailey, B.; Farkas, D. L.; Taylor, D. L.; Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing- wave excitation. Nature 1993, 366, 44–48.

4

Hell, S.; Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 1992, 9, 2159–2166.

5

Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. lett. 1994, 19, 780–782.

6

Klar, T. A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210.

7

Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645.

8

Hess, S. T.; Girirajan, T. P. K.; Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 2006, 91, 4258–4272.

9

Rust, M. J.; Bates, M.; Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

10

Heilemann, M.; van de Linde, S.; Schüttpelz, M.; Kasper, R.; Seefeldt, B.; Mukherjee, A.; Tinnefeld, P.; Sauer, M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem., Int. Ed. 2008, 47, 6172–6176.

11

Legant, W. R.; Shao, L.; Grimm, J. B.; Brown, T. A.; Milkie, D. E.; Avants, B. B.; Lavis, L. D.; Betzig, E. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 2016, 13, 359–365.

12

Curdt, F.; Herr, S. J.; Lutz, T.; Schmidt, R.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. isoSTED nanoscopy with intrinsic beam alignment. Opt. Express 2015, 23, 30891–30903.

13

Sharonov, A.; Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 2006, 103, 18911–18916.

14

Jungmann, R.; Avendaño, M. S.; Woehrstein, J. B.; Dai, M. J.; Shih, W. M.; Yin, P. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 2014, 11, 313–318.

15

Jungmann, R.; Steinhauer, C.; Scheible, M.; Kuzyk, A.; Tinnefeld, P.; Simmel, F. C. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 2010, 10, 4756–4761.

16

Schnitzbauer, J.; Strauss, M. T.; Schlichthaerle, T.; Schueder, F.; Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 2017, 12, 1198–1228.

17

Agasti, S. S.; Wang, Y.; Schueder, F.; Sukumar, A.; Jungmann, R.; Yin, P. DNA-barcoded labeling probes for highly multiplexed exchange-PAINT imaging. Chem. Sci. 2017, 8, 3080–3091.

18

Thompson, R. E.; Larson, D. R.; Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002, 82, 2775–2783.

19

Markham, N. R.; Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 2005, 33, W577–W581.

20

Markham, N. R.; Zuker, M. UNAFold: Software for nucleic acid folding and hybridization. In Bioinformatics, Volume II. Structure, Function and Applications. Keith, J. M., Ed.; Humana Press: Totowa, NJ, 2008; pp 3–31.

21

Molle, J.; Raab, M.; Holzmeister, S.; Schmitt-Monreal, D.; Grohmann, D.; He, Z. K.; Tinnefeld, P. Superresolution microscopy with transient binding. Curr. Opin. Biotechnol. 2016, 39, 8–16.

22

Schueder, F.; Strauss, M. T.; Hoerl, D.; Schnitzbauer, J.; Schlichthaerle, T.; Strauss, S.; Yin, P.; Harz, H.; Leonhardt, H.; Jungmann, R. Universal super-resolution multiplexing by DNA exchange. Angew. Chem., Int. Ed. 2017, 56, 4052–4055.

23

Wang, Y.; Woehrstein, J. B.; Donoghue, N.; Dai, M. J.; Avendaño, M. S.; Schackmann, R. C. J.; Zoeller, J. J.; Wang, S. S. H.; Tillberg, P. W.; Park, D. et al. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Lett. 2017, 17, 6131–6139.

24

Beater, S.; Holzmeister, P.; Lalkens, B.; Tinnefeld, P. Simple and aberration-free 4color-STED-multiplexing by transient binding. Opt. Express 2015, 23, 8630–8638.

25

Hou, Y. F.; Crossman, D. J.; Rajagopal, V.; Baddeley, D.; Jayasinghe, I.; Soeller, C. Super-resolution fluorescence imaging to study cardiac biophysics: α-actinin distribution and Z-disk topologies in optically thick cardiac tissue slices. Prog. Biophys. Mol. Biol. 2014, 115, 328–339.

26

Crossman, D. J.; Hou, Y. F.; Jayasinghe, I.; Baddeley, D.; Soeller, C. Combining confocal and single molecule localisation microscopy: A correlative approach to multi-scale tissue imaging. Methods 2015, 88, 98–108.

27

Baddeley, D.; Cannell, M. B.; Soeller, C. Visualization of localization microscopy data. Microsc. Microanal. 2010, 16, 64–72.

Nano Research
Pages 6141-6154
Cite this article:
Lutz T, Clowsley AH, Lin R, et al. Versatile multiplexed super-resolution imaging of nanostructures by Quencher-Exchange-PAINT. Nano Research, 2018, 11(12): 6141-6154. https://doi.org/10.1007/s12274-018-1971-6

931

Views

31

Downloads

19

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 12 October 2017
Revised: 20 December 2017
Accepted: 21 December 2017
Published: 02 February 2018
© The Author(s) 2018

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return