Journal Home > Volume 11 , Issue 7

The micro- and nanostructures of human dental enamel were investigated by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). For this purpose, TEM slices were prepared from teeth by focused ion-beam milling. These slices enabled TEM and transmission-EBSD (t-EBSD) investigations to be performed, while standard EBSD on bulk tooth samples resulted only in Kikuchi patterns. On the TEM slices, t-EBSD enabled automated mapping. The TEM images and the EBSD data clearly elucidated the arrangement of the hydroxyapatite crystals on the nanometer scale. Information regarding the crystallographic orientation of the apatite grains enabled the deduction of novel nanotechnological building principles of the enamel structure based on a chain-like arrangement of the crystallites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Human dental enamel: A natural nanotechnology masterpiece investigated by TEM and t-EBSD

Show Author's information Anjela Koblischka-Veneva1,2( )Michael R. Koblischka1Jörg Schmauch1Matthias Hannig2
Experimental PhysicsSaarland UniversityP. O. Box 15115066041Saarbrücken, Germany
Clinic of Operative dentistryPeriodontology and Preventive DentistrySaarland UniversityBuilding 7366421Homburg/Saar, Germany

Abstract

The micro- and nanostructures of human dental enamel were investigated by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). For this purpose, TEM slices were prepared from teeth by focused ion-beam milling. These slices enabled TEM and transmission-EBSD (t-EBSD) investigations to be performed, while standard EBSD on bulk tooth samples resulted only in Kikuchi patterns. On the TEM slices, t-EBSD enabled automated mapping. The TEM images and the EBSD data clearly elucidated the arrangement of the hydroxyapatite crystals on the nanometer scale. Information regarding the crystallographic orientation of the apatite grains enabled the deduction of novel nanotechnological building principles of the enamel structure based on a chain-like arrangement of the crystallites.

Keywords: microstructure, transmission electron microscopy (TEM), electron backscatter diffraction (EBSD), enamel, transmission-EBSD (t-EBSD)

References(50)

1

Black, J.; Hastings, G. Handbook of Biomaterial Properties; Springer Verlag: Berlin, 1998.

DOI
2

Cui, F. Z.; Ge, J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J. Tissue Eng. Regenerative Med. 2007, 1, 185–191.

3

Wilson, R. M.; Elliott, J. C.; Dowker, S. E. P. Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am. Mineral. 1999, 84, 1406–1414.

4

Al-Jawad, M.; Steuwer, A.; Kilcoyne, S. H.; Shore, R. C.; Cywinski, R.; Wood, D. J. 2D mapping of texture and lattice parameters of dental enamel. Biomaterials 2007, 28, 2908–2914.

5

Eimar, H.; Ghadimi, E.; Marelli, B.; Vali, H.; Nazhat, S. N.; Amin, W. M.; Torres, J.; Ciubanu, O.; Albuquerque Junior, R. F.; Tamimi, F. Regulation of enamel hardness by its crystallographic dimensions. Acta Biomater. 2012, 8, 3400–3410.

6

Cuy, J. L.; Mann, A. B.; Livi, K. J.; Teaford, M. F.; Weihs, T. P. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 2002, 47, 281–291.

7

Farina, M.; Schemmel, A.; Weissmüller, G.; Cruz, R.; Kachar, B.; Bisch, P. M. Atomic force microscopy study of tooth surfaces. J. Struct. Biol. 1999, 125, 39–49.

8

Imbeni, V.; Kruzic, J. J.; Marshall, G. W.; Marshall, S. J.; Ritchie, R. O. The dentin-enamel junction and the fracture of human teeth. Nat. Mater. 2005, 4, 229–232.

9

Sakae, T. Variations in dental enamel crystallites and microstructure. J. Oral Biosci. 2006, 48, 85–93.

10

Macho, G. A.; Jiang, Y.; Spears, I. R. Enamel microstructure—A truly three-dimensional structure. J. Hum. Evol. 2003, 45, 81–90.

11

Jiang, Y.; Spears, I. R.; Macho, G. A. An investigation into fractured surfaces of enamel of modern human teeth: A combined SEM and computer visualisation study. Arch. Oral Biol. 2003, 48, 449–457.

12

He, L. H.; Swain, M. V. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J. Mech. Behavior Biomed. Mater. 2008, 1, 18–29.

13

Meckel, A. H.; Griebstein, W. J.; Neal, R. J. Structure of mature human dental enamel as observed by electron microscopy. Arch. Oral Biol. 1965, 10, 775–783.

14

Frazier, P. D. Adult human enamel: An electron microscopic study of crystallite size and morphology. J. Ultrastruct. Res. 1968, 22, 1–11.

15

Marshall, A. F.; Lawless, K. R. TEM study of the central dark line in enamel crystallites. J. Dent. Res. 1981, 60, 1773–1782.

16

Daculsi, G.; Menanteau, J.; Kerebel, L. M.; Mitre, D. Length and shape of enamel crystals. Calcif. Tissue Int. 1984, 36, 550–555.

17

Bres, E. F.; Barry, J. C.; Hutchinson, J. L. A structural basis for the carious dissolution of the apatite crystals of human tooth enamel. Ultramicroscopy 19831984, 12, 367–371.

18

Xue, J.; Zavgorodniy, A. V.; Kennedy, B. J.; Swain, M. V.; Li, W. X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel. J. Microsc. 2013, 251, 144–153.

19

Srot, V.; Salzberger, U.; van Aken, P.; Koch, C. T. Exploring teeth by analytical (S)TEM. Imaging and Microscopy. http://www.imaging-git.com (accessed Sep 23, 2013).

20

Srot, V.; Bussmann, B.; Salzberger, U.; Koch, C. T.; van Aken, P. A. Linking microstructure and nanochemistry in human dental tissues. Microsc. Microanal. 2012, 18, 509–523.

21

Sadat-Shojai, M.; Khorosani, M. -T.; Dinpanah-Khashdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9, 7591–7621.

22

Hannig, M.; Hannig, C. Nanomaterials in preventive dentistry. Nat. Nanotechnol. 2010, 5, 565–569.

23

Orloff, J.; Utlaut, M.; Swanson, L. High Resolution Focused Ion Beams: FIB and Its Applications; Springer Press: New York, 2003.

DOI
24

Reyntjens, S.; Puers, R. A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 2001, 11, 287–300.

25

Tseng, A. A. Recent developments in nanofabrication using focused ion beams. Small 2005, 1, 924–939.

26

Prenitzer, B. I.; Urbanik-Shannon, C. A.; Gianuzzi, L. A.; Brown, S. R.; Irwin, R. B.; Shofner, T. L.; Stevie, F. A. The correlation between ion beam/material interactions and practical FIB specimen preparation. Microsc. Microanal. 2003, 9, 216–236.

27

Sugiyama, M.; Sigesato, G. A review of focused ion beam technology and its applications in transmission electron microscopy. J. Electron Microsc. 2004, 53, 527–536.

28

Drobne, D.; Milani, M.; Lešer, V.; Tatti, F. Surface damage induced by FIB milling and imaging of biological samples is controllable. Microsc. Res. Techn. 2007, 70, 895–903.

29

Kallistová, A.; Skála, R.; Horácek, I.; Miyajima, N.; Maliková, R. Influence of sample preparation on the microstructure of tooth enamel apatite. J. Appl. Cryst. 2015, 48, 763–768.

30

Cusak, M. Biomineral electron backscatter diffraction for palaeontology. Palaeontology 2016, 59, 171–179.

31

Schmahl, W. W.; Griesshaber, E.; Kelm, K.; Ball, A.; Goetz, A.; Xu, D. Y.; Kreitmeier, L.; Jordan, G. Towards systematics of calcite biocrystals: Insight from the inside. Z. Kristallogr. 2012, 227, 604–611.

32

Giannuzzi, L. A.; Stevie, F. A. A review of focused ion beam milling techniques for TEM specimen preparation. Micron 1999, 30, 197–204.

33

Trimby, P. W. Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 2012, 120, 16–24.

34

Sneddon, G. C.; Trimby, P. W.; Cairney J. M. Transmission Kikuchi diffraction in a scanning electron microscope: A review. Mat. Sci. Eng. : R: Rep. 2016, 110, 1–12.

35

Keller, R. R.; Geis, R. H. Transmission EBSD from 10 nm domains in a scanning electron microscope. J. Microscopy 2012, 245, 245–251.

36

Suzuki, S. Evaluation of transmission-EBSD method and its application to observation of microstructures of metals. J. Japan Inst. Met. Mater. 2013, 77, 268–275.

37

Britton, B.; Holton, I.; Meaden, G.; Dingley, D. High angular resolution electron backscatter diffraction: Measurement of strain in functional and structural materials. Microsc. Anal. 2013, 1–5.

38

Koblischka, M. R.; Koblischka-Veneva, A. Applications of the electron backscatter diffraction technique to ceramic materials. Phase Trans. 2013, 86, 651–660.

39

Koblischka-Veneva, A.; Koblischka, M. R.; Schmauch, J.; Chen, Y.; Harris, V. G. EBSD analysis of the microtexture of Ba-hexaferrite samples. J. Phys. Conf. Ser. 2010, 200, 082014.

40

TexSEM Laboratories (TSL). Orientation Imaging Microscopy Software Version V4.1, User Manual; TexSEM Laboratories (TSL): Draper, UT, 2004.

41

Koblischka-Veneva, A.; Koblischka, M. R.; Schmauch, J.; Inoue, K.; Muralidhar, M.; Berger, K.; Noudem, J. EBSD analysis of MgB2 bulk superconductors. Supercond. Sci. Technol. 2016, 29, 044007.

42

Dingley, D. Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J. Microsc. 2004, 213, 214–224.

43

Chen, D.; Kuo, J. -C.; Wu, W. -T. Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy 2011, 111, 1488–1494.

44

Humphreys, F. J. Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD). Scr. Mater. 2004, 51, 771–776.

45

Deal, A.; Hooghan, T.; Eades, A. Energy-filtered electron backscatter diffraction. Ultramicroscopy 2008, 108, 116–125.

46

van Bremen, R.; Ribas Gomes, D.; de Jeer, L. T. H.; Ocelik, V.; De Hosson, J. Th. M. On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD). Ultramicroscopy 2016, 160, 256–264.

47

Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis; Springer Science & Business Media: Berlin Heidelberg, 1985.

DOI
48

Carneiro, K. M. M.; Zhai, H. L.; Zhu, L.; Horst, J. A.; Sitlin, M.; Nguyen, M.; Wagner, M.; Simpliciano, C.; Milder, M.; Chen, C. L. et al. Amyloid-like ribbons of amelogenins in enamel mineralization. Sci. Rep. 2016, 6, 23105.

49

Uchic, M. D.; Holzer, L.; Inkson, B. J.; Principe, E. L.; Munroe, P. Three-dimensional microstructural characterization using focused ion beam tomography. MRS Bull. 2007, 32, 408–416.

50

Zaefferer, S.; Wright, S. I.; Raabe, D. Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: A new dimension of microstructure characterization. Metall. Mater. Trans. A 2008, 39, 374–389.

File
12274_2018_1968_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 July 2017
Revised: 06 December 2017
Accepted: 23 December 2017
Published: 11 January 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

This work is supported by Saarland University ("Anschubfinanzierung"). The authors thank F. Soldera (UdS, Institute of Functional Materials) for the excellent FIB work.

Return