Journal Home > Volume 11 , Issue 7

Cu(In, Ga)Se2 (CIGS)-based materials have gained remarkable attention for thin-film photovoltaic applications due to their high absorption coefficient, tunable bandgap, compositional tolerance, outstanding stabilities, and high efficiency. A small increase in the efficiency of CIGS solar cells has huge economic impact and practical importance. As such, we fabricated a flexible CIGS solar cell on amica substrate and demonstrated the enhanced device performance through the piezo- and pyro-phototronic effects based on a ZnO thin film. The device showed enhanced energy conversion efficiency from 13.48% to 14.23% by decreasing the temperature from 31 to 2 ℃ at a rate of ~ 0.6 ℃·s-1 via the pyro-phototronic effect, and further enhanced from 14.23% to 14.37% via the piezo-phototronic effect by further applying a static compressive strain. A pyro-electric nanogenerator effect was also found to promote the performance of the CIGS solar cell at the beginning of the cooling process. The manipulated energy band of the CIGS/CdS/ZnO heterojunction under the influence of the inner pyroelectric and piezoelectric potentials is believed to contribute to the sephenomena. Applying the piezo- and pyro-phototronic effects simultaneously offers a new opportunity for enhancing the output performance of commercialthin film solar cells.


menu
Abstract
Full text
Outline
About this article

Piezo-phototronic and pyro-phototronic effects to enhance Cu(In, Ga)Se2 thin film solar cells

Show Author's information Laipan Zhu1Pei Lin1Baodong Chen1Longfei Wang1Libo Chen1Ding Li1Zhong Lin Wang1,2( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
College of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China

Abstract

Cu(In, Ga)Se2 (CIGS)-based materials have gained remarkable attention for thin-film photovoltaic applications due to their high absorption coefficient, tunable bandgap, compositional tolerance, outstanding stabilities, and high efficiency. A small increase in the efficiency of CIGS solar cells has huge economic impact and practical importance. As such, we fabricated a flexible CIGS solar cell on amica substrate and demonstrated the enhanced device performance through the piezo- and pyro-phototronic effects based on a ZnO thin film. The device showed enhanced energy conversion efficiency from 13.48% to 14.23% by decreasing the temperature from 31 to 2 ℃ at a rate of ~ 0.6 ℃·s-1 via the pyro-phototronic effect, and further enhanced from 14.23% to 14.37% via the piezo-phototronic effect by further applying a static compressive strain. A pyro-electric nanogenerator effect was also found to promote the performance of the CIGS solar cell at the beginning of the cooling process. The manipulated energy band of the CIGS/CdS/ZnO heterojunction under the influence of the inner pyroelectric and piezoelectric potentials is believed to contribute to the sephenomena. Applying the piezo- and pyro-phototronic effects simultaneously offers a new opportunity for enhancing the output performance of commercialthin film solar cells.

Keywords: pyro-phototronic effect, piezopotential, CIGS solar cell, piezo-phototronic effect, pyropotential

References(36)

1

Zhang, Y.; Yang, Y.; Gu, Y. S.; Yan, X. Q.; Liao, Q. L.; Li, P. F.; Zhang, Z.; Wang, Z. Z. Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy 2015, 14, 30–48.

2

Yu, Y. H.; Zhang, Z.; Yin, X.; Kvit, A.; Liao, Q. L.; Kang, Z.; Yan, X. Q.; Zhang, Y.; Wang, X. D. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. Nature Energy 2017, 2, 17045.

3

Tyagi, V. V.; Rahim, N. A. A.; Rahim, N. A.; Selvaraj, J. A. L. Progress in solar PV technology: Research and achievement. Renew. Sust. Energy Rev. 2013, 20, 443–461.

4

Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials: Present efficiencies and future challenges. Science 2016, 352, aad4424.

5

Kraemer, D.; Poudel, B.; Feng, H. P.; Caylor, J. C.; Yu, B.; Yan, X.; Ma, Y.; Wang, X. W.; Wang, D. Z.; Muto, A. et al. Highperformance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532–538.

6

Ni, G.; Li, G.; Boriskina, S. V.; Li, H. X.; Yang, W. L.; Zhang, T. J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126.

7

Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.

8

Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646.

9

Wu, W. Z.; Wang, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 2016, 1, 16031.

10

Wang, Z. L. Piezo-phototronic effect on solar cells. In Piezotronics andPiezo-Phototronics. Springer: Berlin, Heidelberg, 2012; pp 153–178.

11

Hu, G. F.; Guo, W. X.; Yu, R. M.; Yang, X. N.; Zhou, R. R.; Pan, C. F.; Wang, Z. L. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect. Nano Energy 2016, 23, 27–33.

12

Pan, C. F.; Niu, S. M.; Ding, Y.; Dong, L.; Yu, R. M.; Liu, Y; Zhu, G; Wang, Z. L. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 2012, 12, 3302–3307.

13

Yang, Y.; Guo, W. X.; Zhang, Y; Ding, Y; Wang, X.; Wang, Z. L. Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. Nano Lett. 2011, 11, 4812–4817.

14

Zhu, L. P.; Wang, L. F.; Xue, F.; Chen, L. B.; Fu, J. Q.; Feng, X. L.; Li, T. F.; Wang, Z. L. Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array. Adv. Sci. 2017, 4, 1600185.

15

Zhang, Y.; Yang, Y.; Wang, Z. L. Piezo-phototronics effect on nano/microwire solar cells. Energy Environ. Sci. 2012, 5, 6850–6856.

16

Zhu, L. P.; Wang, L. F.; Pan, C. F.; Chen, L. B.; Xue, F.; Chen, B. D.; Yang, L. J. .; Su, L.; Wang, Z. L. Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect. ACS Nano 2017, 11, 1894–1900.

17

Zhang, Z.; Kang, Z.; Liao, Q. L.; Zhang, X. M.; Zhang, Y One-dimensional ZnO nanostructure-based optoelectronics. Chin. Phys. B 2017, 26, 118102.

18

Wang, Z. N.; Yu, R. M.; Pan, C. F.; Li, Z. L.; Yang, J.; Yi, F.; Wang, Z. L. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 2015, 6, 8401.

19

Zhang, K. W.; Wang, Z. L.; Yang, Y Enhanced P3HT/ZnO nanowire array solar cells by pyro-phototronic effect. ACS Nano 2016, 10, 10331–10338.

20

Peng, W. B.; Yu, R. M.; Wang, X. N.; Wang, Z. N.; Zou, H. Y; He, Y. N.; Wang, Z. L. Temperature dependence of pyrophototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Res. 2016, 9, 3695–3704.

21

Ramanathan, K.; Contreras, M. A.; Perkins, C. L.; Asher, S.; Hasoon, F. S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R. et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovoltaics: Res. Appl. 2003, 11, 225–230.

22

Chirila, A.; Buecheler, S.; Pianezzi, F.; Bloesch, P.; Gretener, C.; Uhl, A. R.; Fella, C.; Kranz, L.; Perrenoud, J.; Seyrling, S. et al. Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 2011, 10, 857–861.

23

Repins, I.; Contreras, M. A.; Egaas, B.; De Hart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovoltaics: Res. Appl. 2008, 16, 235–239.

24

Ae, L.; Kieven, D.; Chen, J.; Klenk, R.; Rissom, T.; Tang, Y.; Lux-Steiner, M. C. ZnO nanorod arrays as an antireflective coating for Cu(In, Ga)Se2 thin film solar cells. Prog. Photovoltaics: Res. Appl. 2010, 18, 209–213.

25

Duchatelet, A.; Letty, E.; Jaime-Ferrer, S.; Grand, P. P.; Mollica, F.; Naghavi, N. The impact of reducing the thickness of electrodeposited stacked Cu/In/Ga layers on the performance of CIGS solar cells. Sol. Energy Mater. Sol. C. 2017, 162, 114–119.

26

Wen, X. N.; Wu, W. Z.; Wang, Z. L. Effective piezo-phototronic enhancement of solar cell performance by tuning material properties. Nano Energy 2013, 2, 1093–1100.

27

Wen, X. N.; Wu, W. Z.; Ding, Y.; Wang, Z. L. Piezotronic effect in flexible thin-film based devices. Adv. Mater. 2013, 25, 3371–3379.

28

Li, C. P.; Yang, B. H. Local piezoelectricity and polarity distribution of preferred c-axis-oriented ZnO film investigated by piezoresponse force microscopy. J. Electron. Mater. 2011, 40, 253–258.

29

Zhang, F.; Ding, Y.; Zhang, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. ACS Nano 2012, 6, 9229–9236.

30

Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

31

Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

32

Lin, P.; Gu, Y. S.; Yan, X. Q.; Lu, S. N.; Zhang, Z.; Zhang, Y. Illumination-dependent free carrier screening effect on the performance evolution of ZnO piezotronic strain sensor. Nano Res. 2016, 9, 1091–1100.

33

Yang, Y.; Wang, S. H.; Zhang, Y.; Wang, Z. L. Pyroelectric nanogenerators for driving wireless sensors. Nano Lett. 2012, 12, 6408–6413.

34

Yang, Y.; Guo, W. X.; Pradel, K. C.; Zhu, G; Zhou, Y. S.; Zhang, Y; Hu, Y. F.; Lin, L.; Wang, Z. L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.

35

Ye, C. P.; Tamagawa, T.; Polla, D. L. Experimental studies on primary and secondary pyroelectric effects in Pb(ZrxTi1-x)O3, PbTiO3, and ZnO thin films. J. Appl. Phys. 1991, 70, 5538–5543.

36

Zook, J. D.; Liu, S. T. Pyroelectric effects in thin film. J. Appl. Phys. 1978, 49, 4604–4606.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 November 2017
Revised: 06 December 2017
Accepted: 10 December 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

This research was supported by the "thousands talents" program for pioneer researcher and his innovation team, China, National Natural Science Foundation of China (Nos. 11704032, 51432005, 5151101243 and 51561145021), the National Key R & D Project from Ministery of Science and Technology (No. 2016YFA0202704), the National Program for Support of Top-notch Young Professionals, and the China Postdoctoral Science Foundation (No. 2016M600067).

Return