Journal Home > Volume 11 , Issue 6

Globally, cancer is growing at an alarming pace, which calls for development of more efficient cancer treatments. Conventional chemotherapy and radiotherapy have become crucial first-line clinical treatments for cancer. However, along with their wide usage, limited therapeutic effects, severe adverse reactions, unaffordable costs, and complicated operations lead to failures of these treatments. Moreover, the emergence of multidrug resistance inhibits the longtime usage of chemotherapeutics. One of the major causes of treatment failure is the insufficient sensitivity of cancer cells to therapeutic drugs or treatments. With the rigorous development of nanotechnology, tailored nanoparticles can efficiently sensitize malignant cells by inducing intracellular structural and functional changes, which could affect vital intracellular processes such as metabolism, signal conduction, proliferation, cell death as well as intracellular drug delivery. Here, we review recent advances in nanomaterial-assisted sensitization of oncotherapy, and challenges and strategies in the development of nanomedical approaches.


menu
Abstract
Full text
Outline
About this article

Nanomaterial-assisted sensitization of oncotherapy

Show Author's information Yufei Wang1,2Juan Liu3Xiaowei Ma1,2( )Xing-Jie Liang1,2( )
CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190China
University of Chinese Academy of SciencesBeijing100049China
Tissue Engineering LabBeijing Institute of Transfusion MedicineBeijing100850China

Abstract

Globally, cancer is growing at an alarming pace, which calls for development of more efficient cancer treatments. Conventional chemotherapy and radiotherapy have become crucial first-line clinical treatments for cancer. However, along with their wide usage, limited therapeutic effects, severe adverse reactions, unaffordable costs, and complicated operations lead to failures of these treatments. Moreover, the emergence of multidrug resistance inhibits the longtime usage of chemotherapeutics. One of the major causes of treatment failure is the insufficient sensitivity of cancer cells to therapeutic drugs or treatments. With the rigorous development of nanotechnology, tailored nanoparticles can efficiently sensitize malignant cells by inducing intracellular structural and functional changes, which could affect vital intracellular processes such as metabolism, signal conduction, proliferation, cell death as well as intracellular drug delivery. Here, we review recent advances in nanomaterial-assisted sensitization of oncotherapy, and challenges and strategies in the development of nanomedical approaches.

Keywords: nanomaterial, oncotherapy, sensitization of oncotherapy, multidrug resistance

References(153)

1
World Health Organization. Global health observatory data repository. 2011. Number of deaths (World) by cause [Online]. http://apps.who.int/gho/data/node.main.CODWORLD?lang=en. (accessed Oct 25, 2017).
2

Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer 2015, 136, 359–386.

3

Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108.

4

Steliarova-Foucher, E.; Colombet, M.; Ries, L. A. G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H. Y.; Stiller, C. A.; Bouzbid, S. et al. International incidence of childhood cancer, 2001-10: A population-based registry study. Lancet Oncol. 2017, 18, 719–731.

5

Chen, L. M.; Sun, J. H.; Yang, X. M. Radiofrequency ablation-combined multimodel therapies for hepatocellular carcinoma: Current status. Cancer Lett. 2016, 370, 78–84.

6

Ribas, A. Releasing the brakes on cancer immunotherapy. N. Engl. J. Med. 2015, 373, 1490–1492.

7

Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

8

Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

9

Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem, Int. Ed. 2014, 53, 12320–12364.

10

Lazarovits, J.; Chen, Y. Y.; Sykes, E. A.; Chan, W. C. W. Nanoparticle-blood interactions: The implications on solid tumour targeting. Chem. Commun. 2015, 51, 2756–2767.

11

Zeng, L. L.; Gupta, P.; Chen, Y. L.; Wang, E. J.; Ji, L. N.; Chao, H.; Chen, Z. S. The development of anticancer ruthenium(Ⅱ) complexes: From single molecule compounds to nanomaterials. Chem. Soc. Rev. 2017, 46, 5771–5804.

12

Luqmani, Y. A. Mechanisms of drug resistance in cancer chemotherapy. Med. Prin. Pract. 2005, 14, 35–48.

13

Ma, N. N.; Wu, F. G.; Zhang, X. D.; Jiang, Y. W.; Jia, H. R.; Wang, H. Y.; Li, Y. H.; Liu, P. D.; Gu, N.; Chen, Z. Shapedependent radiosensitization effect of gold nanostructures in cancer radiotherapy: Comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl. Mater. Interfaces 2017, 9, 13037–13048.

14

Bedard, P. L.; Hansen, A. R.; Ratain, M. J.; Siu, L. L. Tumour heterogeneity in the clinic. Nature 2013, 501, 355–364.

15

Mujokoro, B.; Adabi, M.; Sadroddiny, E.; Adabi, M.; Khosravani, M. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review. Mat. Sci. Eng. C 2016, 69, 1092–1102.

16

Ramu, A.; Glaubiger, D.; Fuks, Z. Reversal of acquired resistance to doxorubicin in p388 murine leukemia cells by tamoxifen and other triparanol analogues. Cancer Res. 1984, 44, 4392–4395.

17

Vinod, B. S.; Maliekal, T. T.; Anto, R. J. Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance. Antioxid. Redox Signal. 2013, 18, 1307–1348.

18

Fletcher, D. A.; Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485–492.

19

Pawlak, G.; Helfman, D. M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr. Opin. Genet. Dev. 2001, 11, 41–47.

20

Zhang, Z.; Yang, M.; Chen, R.; Su, W.; Li, P.; Chen, S.; Chen, Z.; Chen, A.; Li, S.; Hu, C. IBP regulates epithelial-tomesenchymal transition and the motility of breast cancer cells via rac1, rhoa and cdc42 signaling pathways. Oncogene 2014, 33, 3374–3382.

21

Tavares, S.; Vieira, A. F.; Taubenberger, A. V.; Araujo, M.; Martins, N. P.; Bras-Pereira, C.; Polonia, A.; Herbig, M.; Barreto, C.; Otto, O. et al. Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat. Commun. 2017, 8, 15237.

22

Zhu, J. Q.; Xu, M.; Gao, M.; Zhang, Z. H.; Xu, Y.; Xia, T.; Liu, S. J. Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano 2017, 11, 2637–2651.

23

Overgaard, J. Influence of extracellular pH on the viability and morphology of tumor cells exposed to hyperthermia. J. Natl. Cancer Inst. 1976, 56, 1243–1250.

24

Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 2002, 43, 33–56.

25

Cherukuri, P.; Glazer, E. S.; Curley, S. A. Targeted hyperthermia using metal nanoparticles. Adv. Drug. Deliv. Rev. 2010, 62, 339–345.

26

Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2, 125–132.

27

Ali, M. R. K.; Wu, Y.; Tang, Y.; Xiao, H. P.; Chen, K. C.; Han, T. G.; Fang, N.; Wu, R. H.; El-Sayed, M. A. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc. Natl. Acad. Sci. USA 2017, 114, e5655–E5663.

28

Zhao, R. F.; Han, X. X.; Li, Y. Y.; Wang, H.; Ji, T. J.; Zhao, Y. L.; Nie, G. J. Photothermal effect enhanced cascade-targeting strategy for improved pancreatic cancer therapy by gold nanoshell@mesoporous silica nanorod. ACS Nano 2017, 11, 8103–8113.

29

Sanz, B.; Calatayud, M. P.; Torres, T. E.; Fanarraga, M. L.; Ibarra, M. R.; Goya, G. F. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials 2017, 114, 62–70.

30

Yoshimori, T. Autophagy: A regulated bulk degradation process inside cells. Biochem. Biophys. Res. Commun. 2004, 313, 453–458.

31

Klionsky, D. J. Autophagy: From phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 2007, 8, 931–937.

32

Kumar, D.; Shankar, S.; Srivastava, R. K. Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via Pl3K/Akt/mTOR signaling pathway. Cancer Lett. 2014, 343, 179–189.

33

Li, T. L.; Su, L.; Zhong, N.; Hao, X. X.; Zhong, D. S.; Singhal, S.; Liu, X. G. Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy 2013, 9, 1057–1068.

34

Yang, A. N.; Rajeshkumar, N. V.; Wang, X. X.; Yabuuchi, S.; Alexander, B. M.; Chu, G. C.; Von Hoff, D. D.; Maitra, A.; Kimmelman, A. C. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. CancerDiscov. 2014, 4, 905–913.

35

Zhang, Q. Y.; Linqing, W. U.; Zhang, T.; Han, Y. F.; Lin, X. Autophagy-mediated hmgb1 release promotes gastric cancer cell survival via RAGE activation of extracellular signalregulated kinases 1/2. Oncol. Rep. 2015, 33, 1630–1638.

36

Joshi, S.; Kumar, S.; Ponnusamy, M. P.; Batra, S. K. Hypoxia-induced oxidative stress promotes MUC4 degradation via autophagy to enhance pancreatic cancer cells survival. Oncogene 2016, 35, 5882–5892.

37

Guo, S. J.; Dong, S. J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.

38

Jiang, H. J. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small 2011, 7, 2413–2427.

39

Zhang, Q.; Yang, W. J.; Man, N.; Zheng, F.; Shen, Y. Y.; Sun, K. J.; Li, Y; Wen, L. -P. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy 2009, 5, 1107–1117.

40

Wei, P. F.; Zhang, L.; Lu, Y.; Man, N.; Wen, L. P. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology 2010, 21, 495101.

41

Franskevych, D. V.; Grynyuk, I. I.; Prylutska, S. V; Matyshevska, O. P. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60) in normal and transformed lymphoid cells. Ukrain. Biochem. J. 2016, 88, 44–50.

42

Chen, G. Y.; Meng, C. L.; Lin, K. C.; Tuan, H. Y.; Yang, H. J.; Chen, C. L.; Li, K. C.; Chiang, C. S.; Hu, Y C. Graphene oxide as a chemosensitizer: Diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials 2015, 40, 12–22.

43

Yang, K.; Lu, Y.; Xie, F.; Zou, H.; Fan, X.; Li, B.; Li, W.; Zhang, W.; Mei, L.; Feng, S. S. et al. Cationic liposomes induce cell necrosis through lysosomal dysfunction and late15 stage autophagic flux inhibition. Nanomedicine 2016, 11, 3117–3137.

44

Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.

45

Ishitsuka, A.; Fujine, E.; Mizutani, Y.; Tawada, C.; Kanoh, H.; Banno, Y.; Seishima, M. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. Int. J. Mol. Med. 2014, 34, 1169–1174.

46

Wang, Q.; Alshaker, H.; Bohler, T.; Srivats, S.; Chao, Y. M.; Cooper, C.; Pchejetski, D. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci. Rep. 2017, 7, 5901.

47

Wink, D. A.; Miranda, K. M.; Espey, M. G.; Pluta, R. M.; Hewett, S. J.; Colton, C.; Vitek, M.; Feelisch, M.; Grisham, M. B. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox. Sign. 2001, 3, 203–213.

48

Zhang, X.; Tian, G.; Yin, W. Y.; Wang, L. M.; Zheng, X. P.; Yan, L.; Li, J. X.; Su, H. R.; Chen, C. Y.; Gu, Z. J. et al. Controllable generation of nitric oxide by near-infraredsensitized upconversion nanoparticles for tumor therapy. Adv. Funct. Mater. 2015, 25, 3049–3056.

49

Fan, J.; He, Q. J.; Liu, Y.; Zhang, F. W.; Yang, X. Y.; Wang, Z.; Lu, N.; Fan, W. P.; Lin, L. S.; Niu, G. et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via no-enhanced chemosensitization. ACS Appl. Mater. Interfaces 2016, 8, 13804–13811.

50

Guo, S. R.; Lv, L.; Shen, Y. Y.; Hu, Z. L.; He, Q. J.; Chen, X. Y. A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer. Sci. Rep. 2016, 6, 21459.

51

Singh, M.; Bhatnagar, P.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K. C. Plga-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing ehrlich ascites carcinoma. Int. J. Nanomedicine 2015, 10, 6789–6809.

52

Katiyar, S. S.; Muntimadugu, E.; Rafeeqi, T. A.; Domb, A. J.; Khan, W. Co-delivery of rapamycin-and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 2016, 23, 2608–2616.

53

Johnson, B. M.; Charman W. N.; Porter, C. J. H. Application of compartmental modeling to an examination of in vitro intestinal permeability data: Assessing the impact of tissue uptake, p-glycoprotein, and CYP3A. Drug Metab. Dispos. 2003, 31, 1151–1160.

54

Zaki, N. M. Augmented cytotoxicity of hydroxycamptothecinloaded nanoparticles in lung and colon cancer cells by chemosensitizing pharmaceutical excipients. Drug Deliv. 2014, 21, 265–275.

55

Matsunaga, S.; Asano, T.; Tsutsuda-Asano, A.; Fukunaga, Y. Indomethacin overcomes doxorubicin resistance with inhibiting multi-drug resistance protein 1 (MRP1). Cancer Chemother. Pharmacol. 2006, 58, 348–353.

56

Ji, W.; Wang, B.; Fan, Q.; Xu, C.; He, Y.; Chen, Y. Chemosensitizing indomethacin-conjugated dextran-based micelles for effective delivery of paclitaxel in resistant breast cancer therapy. PLoS One 2017, 12, e180037.

57

Drinberg, V; Bitcover, R.; Rajchenbach, W.; Peer, D. Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Lett. 2014, 354, 290–298.

58

Lee, E.; Oh, C.; Kim, I. S.; Kwon, I. C.; Kim, S. Co-delivery of chemosensitizing sirna and an anticancer agent via multiple monocomplexation-induced hydrophobic association. J. Control. Release 2015, 210, 105–114.

59

Kim, S. S.; Rait, A.; Kim, E.; Pirollo, K. F.; Nishida, M.; Farkas, N.; Dagata, J. A.; Chang, E. H. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano 2014, 8, 5494–5514.

60

Khatri, N.; Rathi, M.; Baradia, D.; Misra, A. cRGD grafted sirna nano-constructs for chemosensitization of gemcitabine hydrochloride in lung cancer treatment. Pharm. Res. 2015, 32, 806–818.

61

Caster, J. M.; Sethi, M.; Kowalczyk, S.; Wang, E.; Tian, X.; Nabeel Hyder, S.; Wagner, K. T.; Zhang, Y. A.; Kapadia, C.; Man Au, K. et al. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity. Nanoscale 2015, 7, 2805–2811.

62

Banerjee, S.; Sahoo, A. K.; Chattopadhyay, A.; Ghosh, S. S. Chemosensitization of iKBa-overexpressing glioblastoma towards anti-cancer agents. RSCAdv. 2014, 4, 39257–39267.

63

Chen, Y.; Zheng, X. L.; Fang, D. L.; Yang, Y.; Zhang, J. K.; Li, H. L.; Xu, B.; Lei, Y.; Ren, K.; Song, X. R. Dual agent loaded plga nanoparticles enhanced antitumor activity in a multidrug-resistant breast tumor eenograft model. Int. J. Mol. Sci. 2014, 15, 2761–2772.

64

Liu, C. W.; Lin, W. J. Using doxorubicin and sirna-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells. J. Drug Target. 2013, 21, 776–786.

65

Kouvaris, J. R.; Kouloulias, V. E.; Vlahos, L. J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncologist 2007, 12, 738–747.

66

Wardman, P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 2007, 19, 397–417.

67

Klein, S.; Dell'Arciprete, M. L.; Wegmann, M.; Distel, L. V. R.; Neuhuber, W.; Gonzalez, M. C.; Kryschi, C. Oxidized silicon nanoparticles for radiosensitization of cancer and tissue cells. Biochem. Biophys. Res. Commun. 2013, 434, 217–222.

68

Yong, Y.; Zhang, C. F.; Gu, Z. J.; Du, J. F.; Guo, Z.; Dong, X. H.; Xie, J. N.; Zhang, G. J.; Liu, X. F.; Zhao, Y. L. Polyoxometalatebased radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano 2017, 11, 7164–7176.

69

Yang, T. B.; Liang, Y.; Hou, J. Z.; Dou, Y. L.; Zhang, W. X. Metabolizable lanthanum-coordination nanoparticles as efficient radiosensitizers for solid tumor therapy. J. Mater. Chem. B 2017, 5, 5137–5144.

70

Wu, H.; Lin, J.; Liu, P. D.; Huang, Z. H.; Zhao, P.; Jin, H. Z.; Ma, J.; Wen, L. P.; Gu, N. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials 2016, 101, 1–9.

71

Du, F. Y.; Li, Z. R.; Zhang, L.; Zhang, M. M.; Gong, A. H.; Tan, Y. W.; Miao, J. W.; Gong, Y. H.; Sun, M. Z.; Ju, H. X. et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials 2017, 121, 109–120.

72

Fang, X.; Wang, Y. L.; Ma, X. C.; Li, Y. Y.; Zhang, Z. L.; Xiao, Z. S.; Liu, L. J.; Gao, X. Y.; Liu, J. Mitochondriatargeting Au nanoclusters enhance radiosensitivity of cancer cells. J. Mater. Chem. B 2017, 5, 4190–4197.

73

Hainfeld, J. F.; Slatkin, D. N.; Smilowitz, H. M. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 2004, 49, N309–N315.

74

Ma, N. N.; Liu, P. D.; He, N. Y.; Gu, N.; Wu, F. G.; Chen, Z. Action of gold nanospikes-based nanoradiosensitizers: Cellular internalization, radiotherapy, and autophagy. ACS Appl. Mater. Interfaces 2017, 9, 31526–31542.

75

Dou, Y.; Guo, Y. Y.; Li, X. D.; Li, X.; Wang, S.; Wang, L.; Lv, G. X.; Zhang, X. N.; Wang, H. J.; Gong, X. Q. et al. Sizetuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano 2016, 10, 2536–2548.

76

Zhao, N.; Yang, Z. R.; Li, B. X.; Meng, J.; Shi, Z. L.; Li, P.; Fu, S. RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triple-negative breast cancer to megavoltage radiation therapy. Int. J. Nanomedicine 2016, 11, 5595–5610.

77

Rosa, S.; Connolly, C.; Schettino, G.; Butterworth, K. T.; Prise, K. M. Biological mechanisms of gold nanoparticle radiosensitization. CancerNanotechnol. 2017, 8, 2.

78
Hubbell, J. H.; Seltzer, S. M. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients (version I. 4) [Online]. http://www.nist.gov/pml/data/xraycoef (accessed Oct 25, 2017).
79

Téoule, R. Radiation-induced DNA damage and its repair. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1987, 51, 573–589.

80

Her, S.; Cui, L.; Bristow, R. G.; Allen, C. Dual action enhancement of gold nanoparticle radiosensitization by pentamidine in triple negative breast cancer. Radiat. Res. 2016, 185, 549–562.

81

Yasui, H.; Takeuchi, R.; Nagane, M.; Meike, S.; Nakamura, Y.; Yamamori, T.; Ikenaka, Y.; Kon, Y.; Murotani, H.; Oishi, M. et al. Radiosensitization of tumor cells through endoplasmic reticulum stress induced by pegylated nanogel containing gold nanoparticles. Cancer Lett. 2014, 347, 151–158.

82

Pawlik, T. M.; Keyomarsi, K. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. 2004, 59, 928–942.

83

Liang, Y; Liu, J.; Liu, T.; Yang, X. S. Anti-C-Met antibody bioconjugated with hollow gold nanospheres as a novel nanomaterial for targeted radiation ablation of human cervical cancer cell. Oncol. Lett. 2017, 14, 2254–2260.

84

Saberi, A.; Shahbazi-Gahrouei, D.; Abbasian, M.; Fesharaki, M.; Baharlouei, A.; Arab-Bafrani, Z. Gold nanoparticles in combination with megavoltage radiation energy increased radiosensitization and apoptosis in colon cancer HT-29 cells. Int. J. Radiat. Biol. 2017, 93, 315–323.

85

Jain, S.; Coulter, J. A.; Hounsell, A. R.; Butterworth, K. T.; McMahon, S. J.; Hyland, W. B.; Muir, M. F.; Dickson, G. R.; Prise, K. M.; Currell, F. J. et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 531–539.

86

Uz, M.; Bulmus, V.; Alsoy Altinkaya, S. Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle-cell interactions: An investigation on cell cycle, apoptosis, and DNA damage. Langmuir 2016, 32, 5997–6009.

87

Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Cell 2005, 7, 513–520.

88

Quail, D. F.; Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437.

89
Vaupel, P. W.; Hockel, M. Oxygenation status of human tumors: A reappraisal using computerized pO2 histography. In: Tumor Oxygenation. Vaupel, P. W.; Kelleher, D. K.; Gunderoth, M., eds.; Fischer-Verlag: New York, 1995; pp219–232.
90

Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 1989, 49, 6449–6465.

91

Gray, L. H.; Conger, A. D.; Ebert, M.; Hornsey, S.; Scott, O. C. A. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 1953, 26, 638–648.

92

Dowdy, A. H.; Bennett, L. R.; Chastain, S. M. Protective action of anoxic anoxia against total body roentgen irradiation of mammals. Radiology 1950, 55, 879–885.

93

Cheng, N. N.; Starkewolf, Z.; Davidson, R. A.; Sharmah, A.; Lee, C. J.; Lien, J.; Guo, T. Chemical enhancement by nanomaterials under X-ray irradiation. J. Am. Chem. Soc. 2012, 134, 1950–1953.

94

Misawa, M.; Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations. Nanomed. Nanotechnol. 2011, 7, 604–614.

95

Chang, Y. Z.; He, L. Z.; Li, Z. L.; Zeng, L. L.; Song, Z. H.; Li, P. H.; Chan, L.; You, Y. Y.; Yu, X. F.; Chu, P. K. et al. Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy. ACS Nano 2017, 11, 4848–4858.

96

Yi, X.; Chen, L.; Zhong, X. Y.; Gao, R. L.; Qian, Y. T.; Wu, F.; Song, G. S.; Chai, Z.; Liu, Z.; Yang, K. Core-shell Au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res. 2016, 9, 3267–3278.

97

Wang, Y.; Roche, O.; Yan, M. S.; Finak, G.; Evans, A. J.; Metcalf, J. L.; Hast, B. E.; Hanna, S. C.; Wondergem, B.; Furge, K. A. et al. Regulation of endocytosis via the oxygen-sensing pathway. Nat. Med. 2009, 15, 319–324.

98

Cui, L.; Tse, K.; Zahedi, P.; Harding, S. M.; Zafarana, G.; Jaffray, D. A.; Bristow, R. G.; Allen, C. Hypoxia and cellular localization influence the radiosensitizing effect of gold nanoparticles (AuNPs) in breast cancer cells. Radiat. Res. 2014, 182, 475–488.

99

Wang, C. M.; Sun, A.; Qiao, Y.; Zhang, P. P.; Ma, L. Y.; Su, M. Cationic surface modification of gold nanoparticles for enhanced cellular uptake and X-ray radiation therapy. J. Mater. Chem B 2015, 3, 7372–7376.

100

Guo, M. L.; Sun, Y. M.; Zhang, X. -D. Enhanced radiation therapy of gold nanoparticles in liver cancer. Appl. Sci. 2017, 7, 232.

101

Lin, Y. T.; McMahon, S. J.; Paganetti, H.; Schuemann, J. Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Phys. Med. Biol. 2015, 60, 4149–4168.

102

Shi, M.; Paquette, B.; Thippayamontri, T.; Gendron, L.; Guerin, B.; Sanche, L. Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles. Int. J. Nanomedicine 2016, 11, 5323–5333.

103

Desoize, B.; Jardillier, J. C. Multicellular resistance: A paradigm for clinical resistance? Crit. Rev. Oncol. Hematol. 2000, 36, 193–207.

104

Szakács, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234.

105

Baguley, B. C. Multiple drug resistance mechanisms in cancer. Mol. Biotechnol. 2010, 46, 308–316.

106

Gao, Z. B.; Zhang, L. N.; Sun, Y. J. Nanotechnology applied to overcome tumor drug resistance. J. Control. Release 2012, 162, 45–55.

107

Singh, M. S.; Tammam, S. N.; Shetab Boushehri, M. A.; Lamprecht, A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol. Res. 2017, 126, 2–30.

108

Li, S. Y; Li, C.; Jin, S. B.; Liu, J.; Xue, X. D.; Eltahan, A. S.; Sun, J. D.; Tan, J. J.; Dong, J. C.; Liang, X. J. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials 2017, 144, 119–129.

109

Liu, J.; Wei, T.; Zhao, J.; Huang, Y. Y.; Deng, H.; Kumar, A.; Wang, C. X.; Liang, Z. C.; Ma, X. W.; Liang, X. J. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 2016, 91, 44–56.

110

Mercado-Lubo, R.; Zhang, Y. W.; Zhao, L.; Rossi, K.; Wu, X.; Zou, Y. K.; Castillo, A.; Leonard, J.; Bortell, R.; Greiner, D. L. et al. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat. Commun. 2016, 7, 12225.

111

Tredan, O.; Galmarini, C. M.; Patel, K.; Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 2007, 99, 1441–1454.

112

Cheng, W.; Nie, J. P.; Gao, N. S.; Liu, G.; Tao, W.; Xiao, X. J.; Jiang, L. J.; Liu, Z. G.; Zeng, X. W.; Mei, L. A multifunctional nanoplatform against multidrug resistant cancer: Merging the best of targeted chemo/gene/photothermal therapy. Adv. Funct. Mater. 2017, 27, 1704135.

113

He, Y. J.; Xing, L.; Cui, P. F.; Zhang, J. L.; Zhu, Y.; Qiao, J. B.; Lyu, J. Y.; Zhang, M.; Luo, C. Q.; Zhou, Y X. et al. Transferrin-inspired vehicles based on pH-responsive coordination bond to combat multidrug-resistant breast cancer. Biomaterials 2017, 113, 266–278.

114

Tian, H.; Luo, Z. Y.; Liu, L. L.; Zheng, M. B.; Chen, Z.; Ma, A. Q.; Liang, R. J.; Han, Z. Q.; Lu, C. Y.; Cai, L. T. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv. Funct. Mater. 2017, 27, 1703197.

115

Wang, A. T.; Liang, D. S.; Liu, Y. J.; Qi, X. R. Roles of ligand and tpgs of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials 2015, 53, 160–172.

116

Yuan, X.; Ji, W. X.; Chen, S.; Bao, Y. L.; Tan, S. W.; Lu, S.; Wu, K. M.; Qian, C. A novel paclitaxel-loaded poly(d, llactide-co-glycolide)-tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment. Int. J. Nanomed. 2016, 11, 2119–2131.

117

Yu, Y.; Wang, Z. H.; Zhang, L.; Yao, H. J.; Zhang, Y.; Li, R. J.; Ju, R. J.; Wang, X. X.; Zhou, J.; Li, N. et al. Mitochondrial targeting topotecan-loaded liposomes for treating drugresistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials 2012, 33, 1808–1820.

118

Tang, S.; Yin, Q.; Zhang, Z. W.; Gu, W. W.; Chen, L. L.; Yu, H. J.; Huang, Y. Z.; Chen, X. Z.; Xu, M. H.; Li, Y. P. Codelivery of doxorubicin and rna using pH-sensitive poly (Pamino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials 2014, 35, 6047–6059.

119

Liu, J.; Ma, X. W.; Jin, S. B.; Xue, X. D.; Zhang, C. Q.; Wei, T.; Guo, W. S.; Liang, X. J. Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol. Pharmaceutics 2016, 13, 1723–1730.

120

Yao, C.; Wang, P. Y.; Li, X. M.; Hu, X. Y.; Hou, J. L.; Wang, L. Y.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 2016, 28, 9341–9348.

121

Lukianova-Hleb, E. Y.; Belyanin, A.; Kashinath, S.; Wu, X. W.; Lapotko, D. O. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 2012, 33, 1821–1826.

122

Lukianova-Hleb, E. Y.; Kim, Y. S.; Belatsarkouski, I.; Gillenwater, A. M.; O'Neill, B. E.; Lapotko, D. O. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nat. Nanotechnol. 2016, 11, 525–532.

123

Lukianova-Hleb, E.; Hu, Y.; Latterini, L.; Tarpani, L.; Lee, S.; Drezek, R. A.; Hafner, J. H.; Lapotko, D. O. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACSNano 2010, 4, 2109–2123.

124

Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

125

Sabharwal, S. S.; Schumacker, P. T. Mitochondrial ros in cancer: Initiators, amplifiers or an achilles' heel? Nat. Rev. Cancer 2014, 14, 709–721.

126

Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discovery 2010, 9, 447–464.

127

Mallick, A.; More, P.; Syed, M. M. K.; Basu, S. Nanoparticlemediated mitochondrial damage induces apoptosis in cancer. ACS Appl. Mater Interfaces 2016, 8, 13218–13231.

128

Tuguntaev, R. G.; Chen, S. Z.; Eltahan, A. S.; Mozhi, A.; Jin, S. B.; Zhang, J. C.; Li, C.; Wang, P. C.; Liang, X. J. P-gp inhibition and mitochondrial impairment by dual-functional nanostructure based on vitamin E derivatives to overcome multidrug resistance. ACS Appl. Mater. Interfaces 2017, 9, 16900–16912.

129

Wang, D. F.; Rong, W. T.; Lu, Y; Hou, J.; Qi, S. S.; Xiao, Q.; Zhang, J.; You, J.; Yu, S. Q.; Xu, Q. TPGS/PLGA nanoparticles for overcoming multidrug resistance by interfering mitochondria of human alveolar adenocarcinoma cells. ACS Appl. Mater. Interfaces 2015, 7, 3888–3901.

130

Qiu, L. P.; Qiao, M. X.; Chen, Q.; Tian, C. M.; Long, M. M.; Wang, M. Y.; Li, Z.; Hu, W.; Li, G.; Cheng, L. et al. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials 2014, 35, 9877–9887.

131

Chen, W. -H.; Luo, G. -F.; Qiu, W. -X.; Lei, Q.; Liu, L. -H.; Zheng, D. -W.; Hong, S.; Cheng, S. -X.; Zhang, X. -Z. Tumortriggered drug release with tumor-targeted accumulation and elevated drug retention to overcome multidrug resistance. Chem. Mater. 2016, 28, 6742–6752.

132

Zhang, R. X.; Li, L. Y.; Li, J.; Xu, Z. S.; Abbasi, A. Z.; Lin, L.; Amini, M. A.; Weng, W. Y.; Sun, Y.; Rauth, A. M. et al. Coordinating biointeraction and bioreaction of a nanocarrier material and an anticancer drug to overcome membrane rigidity and target mitochondria in multidrug-resistant cancer cells. Adv. Funct. Mater. 2017, 27, 1700804.

133

Zhou, H. J.; Zhang, B.; Zheng, J. J.; Yu, M. F.; Zhou, T.; Zhao, K.; Jia, Y. X.; Gao, X. F.; Chen, C. Y.; Wei, T. T. The inhibition of migration and invasion of cancer cells by graphene via the impairment of mitochondrial respiration. Biomaterials 2014, 35, 1597–1607.

134

Chen, Y.; Wang, Z.; Xu, M.; Wang, X.; Liu, R.; Liu, Q.; Zhang, Z. H.; Xia, T.; Zhao, J. C.; Jiang, G. B. et al. Nanosilver incurs an adaptive shunt of energy metabolism mode to glycolysis in tumor and nontumor cells. ACS Nano 2014, 8, 5813–5825.

135

Mizutani, H.; Tada-Oikawa, S.; Hiraku, Y.; Kojima, M.; Kawanishi, S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005, 76, 1439–1453.

136

Eastman, A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. Ther. 1987, 34, 155–166.

137

Fahrenkrog, B.; Aebi, U. The nuclear pore complex: Nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 2003, 4, 757–766.

138

Pante, N.; Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of ~39 nm. Mol. Biol. Cell 2002, 13, 425–434.

139

Fan, Y. B.; Li, C. Y.; Li, F. Y.; Chen, D. Y. pH-activated size reduction of large compound nanoparticles for in vivo nucleus-targeted drug delivery. Biomaterials 2016, 85, 30–39.

140

Pan, L. M.; Liu, J. N.; Shi, J. L. Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy. ACS Appl. Mater. Interfaces 2017, 9, 15952–15961.

141

Maity, A. R.; Stepensky, D. Efficient subcellular targeting to the cell nucleus of quantum dots densely decorated with a nuclear localization sequence peptide. ACS Appl. Mater. Interfaces 2016, 8, 2001–2009.

142

Lee, J. Y.; Lee, S. H.; Oh, M. H.; Kim, J. S.; Park, T. G.; Nam, Y. S. Prolonged gene silencing by sirna/chitosan-g-deoxycholic acid polyplexes loaded within biodegradable polymer nanoparticles. J. Control. Release 2012, 162, 407–413.

143

Liu, C. X.; Zhao, G.; Liu, J.; Ma, N. C.; Chivukula, P.; Perelman, L.; Okada, K.; Chen, Z. Y.; Gough, D.; Yu, L. Novel biodegradable lipid nano complex for sirna delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J. Control. Release 2009, 140, 277–283.

144

Chen, A. M.; Zhang, M.; Wei, D. G.; Stueber, D.; Taratula, O.; Minko, T.; He, H. X. Co-delivery of doxorubicin and Bcl-2 sirna by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug resistant cancer cells. Small 2009, 5, 2673–2677.

145

Talekar, M.; Ouyang, Q.; Goldberg, M. S.; Amiji, M. M. Cosilencing of PKM-2 and MDR-1 sensitizes multidrug-resistant ovarian cancer cells to paclitaxel in a murine model of ovarian cancer. Mol. Cancer Ther. 2015, 14, 1521–1531.

146

Zhang, T. B, ; Guo, W. S.; Zhang, C. Q.; Yu, J.; Xu, J.; Li, S. Y.; Tian, J. H.; Wang, P. C.; Xing, J. F.; Liang, X. J. Transferrin-dressed virus-like ternary nanoparticles with aggregation-induced emission for targeted delivery and rapid cytosolic release of sirna. ACS Appl. Mater. Interfaces 2017, 9, 16006–16014.

147

Gu, X. G.; Kwok, R. T. K.; Lam, J. W. Y; Tang, B. Z. Aiegens for biological process monitoring and disease theranostics. Biomaterials 2017, 146, 115–135.

148

Wang, Y. F.; Zhang, T. B.; Liang, X. J. Aggregation-induced emission: Lighting up cells, revealing life! Small 2016, 12, 6451–6477.

149

Xue, X. D.; Jin, S. B.; Zhang, C. Q.; Yang, K. N.; Huo, S. D.; Chen, F.; Zou, G. Z.; Liang, X. J. Probe-inspired nano-prodrug with dual-color fluorogenic property reveals spatiotemporal drug release in living cells. ACS Nano 2015, 9, 2729–2739.

150

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

151

Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

152

Goel, S.; Ni, D. L.; Cai, W. B. Harnessing the power of nanotechnology for enhanced radiation therapy. ACS Nano 2017, 11, 5233–5237.

153

He, Q. J.; Shi, J. L. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater. 2014, 26, 391–411.

Publication history
Copyright
Acknowledgements

Publication history

Received: 25 October 2017
Revised: 08 December 2017
Accepted: 09 December 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31600808), the Beijing Natural Science Foundation (No. 7164316). This work was also supported by the Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS (No. NSKF201601). This work was supported in part by the Natural Science Foundation key projects (Nos. 31630027 and 31430031). The authors also appreciate the support of the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09030301).

Return