Journal Home > Volume 11 , Issue 7

Simultaneous epitaxial growth of film and nanowire array on a substrate is of both scientific significance and practical importance for nanoscale optoelectronics. Nevertheless, in situ building conducting connection between individually isolated nanowires grown on insulating substrates is still challenging. Herein, we demonstrate a novel and facile strategy for the simultaneous epitaxial growth of nonpolar a-plane ZnO film and obliquely aligned nanowire array on Au-coated r-plane sapphire substrate. The morphology, structure, components, and optical properties of the as-synthesized ZnO nanostructures were investigated using field-emission scanning electron microscopy, X-ray diffraction, field-emission transmission electron microscopy, energy-dispersive spectroscopy, X-ray photo-electron spectroscopy, and photoluminescence spectroscopy. A cooperative growth mechanism is proposed: Au-catalyzed vapor transport initiates the co-occurrence of nonpolar a-plane and polar c-plane ZnO nuclei, and subsequently, the non-upward directed Au catalyst helps the nonpolar a-plane ZnO nuclei develop into a ZnO conductive film at the bottom and zinc self-catalyzed vapor–liquid–solid growth helps the polar c-plane ZnO nuclei develop simultaneously into obliquely aligned nanowire arrays. The proposed strategy realized in situ synthesis of nanowires with conductive connection and it can benefit the application of ZnO nanowires in optoelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Growth modulation of simultaneous epitaxy of ZnO obliquely aligned nanowire arrays and film on r-plane sapphire substrate

Show Author's information Yongchun Xiao1,2Yaoyao Tian1,2Shujing Sun1Chenlong Chen1( )Buguo Wang3( )
Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
College of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
Semiconductor Research CenterWright State UniversityDaytonOH45431USA

Abstract

Simultaneous epitaxial growth of film and nanowire array on a substrate is of both scientific significance and practical importance for nanoscale optoelectronics. Nevertheless, in situ building conducting connection between individually isolated nanowires grown on insulating substrates is still challenging. Herein, we demonstrate a novel and facile strategy for the simultaneous epitaxial growth of nonpolar a-plane ZnO film and obliquely aligned nanowire array on Au-coated r-plane sapphire substrate. The morphology, structure, components, and optical properties of the as-synthesized ZnO nanostructures were investigated using field-emission scanning electron microscopy, X-ray diffraction, field-emission transmission electron microscopy, energy-dispersive spectroscopy, X-ray photo-electron spectroscopy, and photoluminescence spectroscopy. A cooperative growth mechanism is proposed: Au-catalyzed vapor transport initiates the co-occurrence of nonpolar a-plane and polar c-plane ZnO nuclei, and subsequently, the non-upward directed Au catalyst helps the nonpolar a-plane ZnO nuclei develop into a ZnO conductive film at the bottom and zinc self-catalyzed vapor–liquid–solid growth helps the polar c-plane ZnO nuclei develop simultaneously into obliquely aligned nanowire arrays. The proposed strategy realized in situ synthesis of nanowires with conductive connection and it can benefit the application of ZnO nanowires in optoelectronics.

Keywords: ZnO, epitaxy, obliquely aligned nanowire arrays, non-polar thin film, zinc self-catalyzed

References(51)

1

Zhai, T. Y.; Yao, J. N. One-Dimensional Nanostructures Principles and Applications; Hoboken, NJ: Wiley, 2013.

2

Fang, X. S.; Wu, L. M.; Hu, L. F. Zns nanostructure arrays: A developing material star. Adv. Mater. 2011, 23, 585–598.

3

Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569–576.

4

Shi, J.; Sun, X.; Zhang, J. M.; Lian, J.; Yu, Q. K.; Lin, M. S.; Li, H. Epitaxial growth of horizontally aligned zinc oxide nanonecklace arrays on r-plane sapphire. J. Phys. Chem. C 2009, 113, 20845–20854.

5

Özgür, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoi; , H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

6

Cao, F. R.; Tian, W.; Gu, B. K.; Ma, Y. L.; Lu, H.; Li, L. High-performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. NanoRes. 2017, 10, 2244–2256.

7

Zhao, B.; Wang, F.; Chen, H. Y.; Zheng, L. X.; Su, L. X.; Zhao, D. X.; Fang, X. S. An ultrahigh responsivity (9.7 mA W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 2017, 27, 1700264.

8

Lim, S.; Um, D. S.; Ha, M.; Zhang, Q. P.; Lee, Y.; Lin, Y. J.; Fan, Z. Y.; Ko, H. Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes. Nano Res. 2017, 10, 22–36.

9

Zhang, K. W.; Wang, Z. L.; Yang, Y. Enhanced P3HT/ZnO nanowire array solar cells by pyro-phototronic effect. ACS Nano 2016, 10, 10331–10338.

10

Li, S. B.; Zhang, P.; Wang, Y. F.; Sarvari, H.; Liu, D. T.; Wu, J.; Yang, Y. J.; Wang, Z. M.; Chen, Z. D. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res. 2017, 10, 1092–1103.

11

Shao, D. L.; Gao, J.; Xin, G. Q.; Wang, Y. P.; Li, L.; Shi, J.; Lian, J.; Koratkar, N.; Sawyer, S. Cl-doped ZnO nanowire arrays on 3D graphene foam with highly efficient field emission and photocatalytic properties. Small 2015, 11, 4785–4792.

12

Rafique, S.; Han, L.; Zhao, H. P. Growth and electrical properties of free-standing zinc oxide nanomembranes. Cryst. Growth Des. 2016, 16, 1654–1661.

13

Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 5229–5234.

14

van Dang, T.; Hoa, N. D.; van Duy, N.; van Hieu, N. Chlorine gas sensing performance of on-chip grown ZnO, WO3, and SnO2 nanowire sensors. ACS Appl. Mater. Interfaces 2016, 8, 4828–4837.

15

Kang, Z.; Yan, X. Q.; Wang, Y. F.; Zhao, Y. G.; Bai, Z. M.; Liu, Y. C.; Zhao, K.; Cao, S. Y.; Zhang, Y. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res. 2016, 9, 344–352.

16

Liu, J.; Zhang, Z. Y.; Lv, Y. Y.; Yan, J. F.; Yun, J. N.; Zhao, W.; Kou, L.; Zhai, C. X. Synthesis and characterization of ZnO NWAs/graphene composites for enhanced optical and field emission performances. Comp. PartB: Eng. 2016, 99, 366–372.

17

Zheng, Z. Y; Chen, T. X.; Cao, L.; Han, Y Y.; Xu, F. Q. Structure and optical properties of ZnO nanowire arrays grown by plasma-assisted molecular beam epitaxy. J. Inorg. Mater. 2012, 27, 301–304.

18

Tien, L. C.; Pearton, S. J.; Norton, D. P.; Ren, F. Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition. J. Mater. Sci. 2008, 43, 6925–6932.

19

Sinha, M.; Mahapatra, R.; Mondal, B.; Maruyama, T.; Ghosh, R. Ultrafast and reversible gas-sensing properties of ZnO nanowire arrays grown by hydrothermal technique. J. Phys. Chem. C 2016, 120, 3019–3025.

20

Chen, C. Y.; Huang, J. H.; Lai, K. Y.; Jen, Y. J.; Liu, C. P.; He, J. H. Giant optical anisotropy of oblique-aligned ZnO nanowire arrays. Opt. Express 2012, 20, 2015–2024.

21

Huang, J. H.; Chen, C. Y.; Lai, Y. F.; Shih, Y. I.; Lin, Y. C.; He, J. H.; Liu, C. P. Large-area oblique-aligned ZnO nanowires through a continuously bent columnar buffer: Growth, microstructure, and antireflection. Cryst. Growth Des. 2010, 10, 3297–3301.

22

Chen, C. Y.; Huang, J. H.; Song, J. H.; Zhou, Y. S.; Lin, L.; Huang, P. C.; Zhang, Y.; Liu, C. P.; He, J. H.; Wang, Z. L. Anisotropic outputs of a nanogenerator from oblique-aligned ZnO nanowire arrays. ACS Nano 2011, 5, 6707–6713.

23

He, J. H.; Ho, C. H.; Wang, C. W.; Ding, Y.; Chen, L. J.; Wang, Z. L. Growth of crossed ZnO nanorod networks induced by polar substrate surface. Cryst. Growth Des. 2009, 9, 17–19.

24

Zhang, H. H.; Lu, J. G.; Yang, X. P.; Ye, Z. Z.; Huang, J.; Lu, B.; Hu, L.; Li, Y.; Zhang, Y. Z.; Li, D. H. Inclined and ordered ZnO nanowire arrays developed on non-polar ZnO seed-layer films. CrystEngComm 2012, 14, 4501–4506.

25

Zúniga-Pérez, J.; Rahm, A.; Czekalla, C.; Lenzner, J.; Lorenz, M.; Grundmann, M. Ordered growth of tilted ZnO nanowires: Morphological, structural and optical characterization. Nanotechnology 2007, 18, 195303.

26

Mu, G. J.; Gudavarthy, R. V.; Kulp, E. A.; Switzer, J. A. Tilted epitaxial ZnO nanospears on Si(001) by chemical bath deposition. Chem. Mater 2009, 21, 3960–3964.

27

Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

28

Chou, M. M. C.; Chang, L. W.; Hang, D. R.; Chen, C. L.; Chang, D. S.; Li, C. A. Crystal growth of nonpolar m-plane ZnO on a lattice-matched (100) γ-LiAlO2 substrate. Cryst. Growth Des. 2009, 9, 2073–2078.

29

Huang, T. H.; Chang, L. W.; Chou, M. M. C.; Jahn, U. Formation mechanism of {0001} ZnO epitaxial layer on γ-LiAlO2(100) substrate by chemical vapor deposition. J. Electrochem. Soc. 2011, 158, H38–H43.

30

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

31

Peng, C. Y; Wang, W. L.; Ho, Y T.; Tian, J. S.; Chang, L. Interfacial structure of a-plane ZnO grown on r-plane sapphire by pulsed laser deposition. Mater. Lett. 2013, 94, 165–168.

32

Kim, M. S.; Nam, G. W.; Kim, D. W.; Kim, H. E.; Kang, H.; Bin Lee, W.; Choi, H. K.; Kim, Y. S.; Leem, J. Y. Annealing effects of zno seed layers on structural and optical properties of ZnO nanorods grown on r-plane sapphire substrates by hydrothermal method. J. Korean Inst. Met. Mater. 2015, 55, 139–144.

33

Mun, D. H.; Bak, S. J.; Ha, J. S.; Lee, H. J.; Lee, J. K.; Lee, S. H.; Moon, Y. B. Effects of precursor concentration on the properties of ZnO nanowires grown on (1-102) r-plane sapphire substrates by hydrothermal synthesis. J. Nanosci. Nanotechnol. 2014, 14, 5970–5975.

34

Li, G. P.; Jiang, L.; Wang, S. J.; Sun, X. W.; Chen, X. D.; Wu, T. Buffer-layer-assisted epitaxial growth of perfectly aligned oxide nanorod arrays in solution. Cryst. Growth Des. 2011, 11, 4885–4891.

35

Roso, S.; Güell, F.; Martinez-Alanis, P. R.; Urakawa, A.; Llobet, E. Synthesis of ZnO nanowires and impacts of their orientation and defects on their gas sensing properties. Sens. Actuat. B: Chem. 2016, 230, 109–114.

36

Hwang, D. K.; Kim, K. P.; Kim, D. H. High-quality nonpolar ZnO thin films grown on r-plane sapphire by radio frequencymagnetron sputtering. Thin SolidFilms 2013, 546, 18–21.

37

Lin, W. H.; Wu, J. J.; Chou, M. M. C.; Chang, Y. M.; Yoshimura, M. Charge transfer in Au nanoparticle-nonpolar ZnO photocatalysts illustrated by surface-potential-derived three-dimensional band diagram. J. Phys. Chem. C 2014, 118, 19814–19821.

38

Bao, G. H.; Li, D. B.; Sun, X. J.; Jiang, M. M.; Li, Z. M.; Song, H.; Jiang, H.; Chen, Y. R.; Miao, G. Q.; Zhang, Z. W. Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with al nanoparticles. Opt. Express 2014, 22, 24286–24293.

39

Han, S. K.; Hong, S. K.; Lee, J. W.; Lee, J. Y.; Song, J. H.; Nam, Y. S.; Chang, S. K.; Minegishi, T.; Yao, T. Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrates by plasma-assisted molecular-beam epitaxy. J. Cryst. Growth 2007, 309, 121–127.

40

Lu, J.; Wang, H. H.; Peng, D. L.; Chen, T.; Dong, S. J.; Chang, Y. Synthesis and properties of Au/ZnO nanorods as a plasmonic photocatalyst. Phys. E: Low-dimens. Syst. Nanostruc. 2016, 78, 41–48.

41

Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf Sci. 2000, 158, 134–140.

42

Kim, Y. S.; Tai, W. P.; Shu, S. J. Effect of preheating temperature on structural and optical properties of ZnO thin films by sol-gel process. Thin Solid Films 2005, 491, 153–160.

43

Al-Gaashani, R.; Radiman, S.; Daud, A. R.; Tabet, N.; Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013, 39, 2283–2292.

44

Mhlongo, G. H.; Motaung, D. E.; Nkosi, S. S.; Swart, H. C.; Malgas, G. F.; Hillie, K. T.; Mwakikunga, B. W. Temperaturedependence on the structural, optical, and paramagnetic properties of ZnO nanostructures. Appl. Surf. Sci. 2014, 293, 62–70.

45

Kumar, V.; Swart, H. C.; Ntwaeaborwa, O. M.; Kroon, R. E.; Terblans, J. J.; Shaat, S. K. K.; Yousif, A.; Duvenhage, M. M. Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 2013, 101, 57–60.

46

Shingange, K.; Mhlongo, G. H.; Motaung, D. E.; Ntwaeaborwa, O. M. Tailoring the sensing properties of microwave-assisted grown ZnO nanorods: Effect of irradiation time on luminescence and magnetic behaviour. J. Alloys Compd. 2016, 657, 917–926.

47

Hosseini, Z. S.; Mortezaali, A.; Zad, A. I.; Fardindoost, S. Sensitive and selective room temperature H2S gas sensor based on au sensitized vertical ZnO nanorods with flower-like structures. J. Alloys Compd. 2015, 628, 222–229.

48

Hou, W. C.; Chen, L. Y.; Tang, W. C.; Hong, F. C. N. Control of seed detachment in Au-assisted gan nanowire growths. Cryst. Growth Des. 2011, 11, 990–994.

49

Kuo, T. J.; Lin, C. N.; Kuo, C. L.; Huang, M. H. Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts. Chem. Mater. 2007, 19, 5143–5147.

50

Chen, C. L.; Chou, M. M. C.; Yan, T.; Huang, H. C.; Lu, C. Y. J.; Chen, C. H. The synthesis route and the growth mechanism of aligned GaN nanobelts. Chem. Commun. 2014, 50, 5695–5698.

51

Chen, H. G.; Li, Z. W.; Lian, H. D. Control of epitaxial growth orientation in ZnO nanorods on c-plane sapphire substrates. Thin Solid Films 2010, 518, 5520–5524.

File
12274_2017_1960_MOESM1_ESM.pdf (581.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 October 2017
Revised: 02 December 2017
Accepted: 10 December 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

This work was funded by Hundred Talents Program of Fujian Province and the National Natural Science Foundation of China (No. 61774158), and Natural Science Foundation of Fujian Province (No. 2018J01110).

Return