Journal Home > Volume 11 , Issue 7

As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity (~ 670 mAh·g–1). However, the low electrical conductivity of MoS2 and its dramatic volume change during charge/discharge lead to severe capacity degradation and poor cycling stability. In this work, we developed a facile, scalable, and effective synthesis method to embed nanosized MoS2 into a thin film of three-dimensional (3D)-interconnected carbon nanofibers (CNFs), producing a MoS2/CNFs film. The free-standing MoS2/CNFs thin film can be used as anode for NIBs without additional binders or carbon black. The MoS2/CNFs electrode exhibits a high reversible capacity of 260 mAh·g–1, with an extremely low capacity loss of 0.05 mAh·g–1 per cycle after 2, 600 cycles at a current density of 1 A·g–1. This enhanced sodium storage performance is attributed to the synergistic effect and structural advantages achieved by embedding MoS2 in the 3D-interconnected carbon matrix.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries

Show Author's information Hai Yang1Min Wang1Xiaowu Liu1Yu Jiang1Yan Yu1,2( )
CAS Key Laboratory of Materials for Energy ConversionDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefei230026China

Abstract

As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity (~ 670 mAh·g–1). However, the low electrical conductivity of MoS2 and its dramatic volume change during charge/discharge lead to severe capacity degradation and poor cycling stability. In this work, we developed a facile, scalable, and effective synthesis method to embed nanosized MoS2 into a thin film of three-dimensional (3D)-interconnected carbon nanofibers (CNFs), producing a MoS2/CNFs film. The free-standing MoS2/CNFs thin film can be used as anode for NIBs without additional binders or carbon black. The MoS2/CNFs electrode exhibits a high reversible capacity of 260 mAh·g–1, with an extremely low capacity loss of 0.05 mAh·g–1 per cycle after 2, 600 cycles at a current density of 1 A·g–1. This enhanced sodium storage performance is attributed to the synergistic effect and structural advantages achieved by embedding MoS2 in the 3D-interconnected carbon matrix.

Keywords: MoS2 , sodium ion battery, flexible electrode, three-dimensional (3D) interconnected carbon nanofiber

References(56)

1

Dunn, B.; Kaamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

2

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.

3

Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593-4607.

4

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

5

Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 2007, 6, 749-753.

6

Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X. H.; Ceder, G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 2011, 4, 3680-3688.

7

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.

8

Xu, Y.; Zhou, M.; Lei, Y. Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502514.

9

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.

10

Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem., Int. Ed. 2013, 52, 1964-1967.

11

Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.

12

Shen, F.; Luo, W.; Dai, J. Q.; Yao, Y. G.; Zhu, M. W.; Hitz, E.; Tang, Y. F.; Chen, Y. F.; Sprenkle, V. L.; Li, X. L. et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600377.

13

Li, Z. F.; Ma, L.; Surta, T. W.; Bommier, C.; Jian, Z. L.; Xing, Z. Y.; Stickle, W. F.; Dolgos, M.; Amine, K.; Lu, J. et al. High capacity of hard carbon anode in Na-ion batteries unlocked by POx doping. ACS Energy Lett. 2016, 1, 395-401.

14

Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054-2060.

15

Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546-1553.

16

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933-11941.

17

Li, X. F.; Dhanabalan, A.; Gu, L.; Wang, C. L. Three-dimensional porous core-shell Sn@carbon composite anodes for high-performance lithium-ion battery applications. Adv. Energy Mater. 2012, 2, 238-244.

18

Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2-x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126-4133.

19

Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhou, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954-2962.

20

Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. -K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034-2042.

21

Er, D. Q.; Li, J. W.; Naguib, M.; Gogotsi, Y.; Shenoy, V. B. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 11173-11179.

22

Xie, Y.; Dall'Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014, 8, 9606-9615.

23

Yu, L. T.; Liu, J.; Xu, X. J.; Zhang, L. G.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Yang, L. C.; Zhu, M. Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 2017, 11, 5120-5129.

24

Xu, X. J.; Liu, J.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhang, L.; Zhu, M. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 2017, 11, 9033-9040.

25

Ye, L. N.; Wu, C. Z.; Guo, W.; Xie, Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties. Chem. Commun. 2006, 4738-4740.

26

Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698-702.

27

Wu, W. Z.; Wang, L.; Yu, R. M.; Liu, Y. Y.; Wei, S. H.; Hone, J.; Wang, Z. L. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 2016, 28, 8463-8468.

28

Deng, Z. N.; Jiang, H.; Hu, Y. J.; Liu, Y.; Zhang, L.; Liu, H. L.; Li, C. Z. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries. Adv. Mater. 2017, 29, 1603020.

29

Zuo, X. X.; Chang, K.; Zhao, J.; Xie, Z. Z.; Tang, H. W.; Li, B.; Chang, Z. R. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 2016, 4, 51-58.

30

Ding, Y. -L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. A lamellar hybrid assembled from metal disulfide nanowall arrays anchored on a carbon layer: In situ hybridization and improved sodium storage. Adv. Mater. 2016, 28, 7774-7782.

31

Wang, T. Y.; Chen, S. Q.; Pang, H.; Xue, H. G.; Yu, Y. MoS2-based nanocomposites for electrochemical energy storage. Adv. Sci. 2017, 4, 1600289.

32

Park, J.; Kim, J. -S.; Park, J. -W.; Nam, T. -H.; Kim, K. -W.; Ahn, J. -H.; Wang, G. X.; Ahn, H. -J. Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization. Electrochim. Acta 2013, 92, 427-432.

33

Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393-1403.

34

Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.

35

Zhang, X. Q.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. Synthesis of MoS2@C nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries. Small 2016, 12, 2484-2491.

36

Chang, K.; Chen, W. X. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720-4728.

37

Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. D. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 7395-7398.

38

Xu, X.; Fan, Z. Y.; Ding, S. J.; Yu, D. M.; Du, Y. P. Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale 2014, 6, 5245-5250.

39

Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang, G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970-975.

40

Wang, Y.; Qu, Q. T.; Li, G. C.; Gao, T.; Qian, F.; Shao, J.; Liu, W. J.; Shi, Q.; Zheng, H. H. 3D interconnected and multiwalled carbon@MoS2@carbon hollow nanocables as outstanding anodes for Na-ion batteries. Small 2016, 12, 6033-6041.

41

Shi, Z. -T.; Kang, W. P.; Xu, J.; Sun, Y. -W.; Jiang, M.; Ng, T. -W.; Xue, H. -T.; Yu, D. Y. W.; Zhang, W. J.; Lee, C. -S. Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 2016, 22, 27-37.

42

Park, S. -K.; Lee, J.; Bong, S.; Jang, B.; Seong, K. -D.; Piao, Y. Z. Scalable synthesis of few-layer MoS2 incorporated into hierarchical porous carbon nanosheets for high-performance Li- and Na-ion battery anodes. ACS Appl. Mater. Interfaces 2016, 8, 19456-19465.

43

Wang, M.; Yang, Z. Z.; Li, W. H.; Gu, L.; Yu, Y. Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network. Small 2016, 12, 2559-2566.

44

Huang, Y.; Lin, Z. X.; Zheng, M. B.; Wang, T. H.; Yang, J. Z.; Yuan, F. S.; Lu, X. Y.; Liu, L.; Sun, D. P. Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J. Power Sources 2016, 307, 649-656.

45

Wang, M.; Yang, Y.; Yang, Z. Z.; Gu, L.; Chen, Q. W.; Yu, Y. Sodium-ion batteries: Improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping. Adv. Sci. 2017, 4, 1600468.

46

Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 126, 13008-13012.

47

Xie, X. Q.; Makaryan, T.; Zhao, M. Q.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. X. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502161.

48

Liu, Y. P.; He, X. Y.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. G. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 2016, 10, 8821-8828.

49

Wang, R. H.; Xu, C. H.; Sun, J.; Liu, Y. Q.; Gao, L.; Yao, H. L.; Lin, C. C. Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteries. Nano Energy 2014, 8, 183-195.

50

Yu, Z. L.; Xin, S.; You, Y.; Yu, L.; Lin, Y.; Xu, D. W.; Qiao, C.; Huang, Z. H.; Yang, N.; Yu, S. H. et al. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 2016, 138, 14915-14922.

51

Wang, Y.; Wang, C. Y.; Wang, Y. J.; Liu, H. K.; Huang, Z. G. Boric acid assisted reduction of graphene oxide: A promising material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 18860-18866.

52

Wang, Y. S.; Ma, Z. M.; Chen, Y. J.; Zou, M. C.; Yousaf, M.; Yang, Y. B.; Yang, L. S.; Cao, A. Y.; Han, R. P. S. Controlled synthesis of core-shell carbon@MoS2 nanotube sponges as high-performance battery electrodes. Adv. Mater. 2016, 28, 10175-10181.

53

Wang, J.; Liu, J. L.; Yang, H.; Chao, D. L.; Yan, J. X.; Savilov, S. V.; Lin, J. Y.; Shen, Z. X. MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Na-ion storage. Nano Energy 2016, 20, 1-10.

54

Mahmood, Q.; Park, S. K.; Kwon, K. D.; Chang, S. J.; Hong, J. Y.; Shen, G. Z.; Jung, Y. M.; Park, T. J.; Khang, S. W.; Kim, W. S. et al. Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 2016, 6, 1501115.

55

Wang, J. J.; Luo, C.; Gao, T.; Langrock, A.; Mignerey, A. C.; Wang, C. S. An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 2015, 11, 473-481.

56

Choi, S. H.; Ko, Y. N.; Lee, J. -K.; Kang, Y. C. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780-1788.

File
12274_2017_1958_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2017
Revised: 14 November 2017
Accepted: 10 December 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0100305), the National Natural Science Foundation of China (Nos. 21373195 and 51622210), the Fundamental Research Funds for the Central Universities (No. WK3430000004), and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

Return