Journal Home > Volume 11 , Issue 7

Though phytochemicals are a promising alternative to traditional antibiotics for combating resistant bacteria, the low water solubility and lack of selectivity seriously hinder their widespread applications. Herein, we constructed a hyaluronidase-activated "on-demand" delivery nanocarrier to encapsulate plant essential oils (PEOs) for the synergistic treatment of multidrug-resistant bacteria. The bioavailability and selectivity of PEOs was enhanced and the antibacterial effect was significantly improved by combining with the photothermal effect of the nanocarrier. This antibacterial system was successfully applied for healing methicillin-resistant Staphylococcus aureus-infected wound with negligible cytotoxicity and biotoxicity in mice. Given the increasing risk of antibiotic resistance, we believe that this phytochemical-encapsulated nanoplatform would provide a long-term solution and be a new powerful tool for skin-associated bacterial infections.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phytochemical-encapsulated nanoplatform for "on-demand" synergistic treatment of multidrug-resistant bacteria

Show Author's information Panpan Sun1,3Yan Zhang1Xiang Ran1Chaoying Liu2( )Zhenzhen Wang1Jinsong Ren1( )Xiaogang Qu1( )
State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical BiologyChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
Department of Respiratory MedicineFirst Affiliated HospitalJilin UniversityChangchun130021China
University of Science and Technology of ChinaHefei230029China

Abstract

Though phytochemicals are a promising alternative to traditional antibiotics for combating resistant bacteria, the low water solubility and lack of selectivity seriously hinder their widespread applications. Herein, we constructed a hyaluronidase-activated "on-demand" delivery nanocarrier to encapsulate plant essential oils (PEOs) for the synergistic treatment of multidrug-resistant bacteria. The bioavailability and selectivity of PEOs was enhanced and the antibacterial effect was significantly improved by combining with the photothermal effect of the nanocarrier. This antibacterial system was successfully applied for healing methicillin-resistant Staphylococcus aureus-infected wound with negligible cytotoxicity and biotoxicity in mice. Given the increasing risk of antibiotic resistance, we believe that this phytochemical-encapsulated nanoplatform would provide a long-term solution and be a new powerful tool for skin-associated bacterial infections.

Keywords: nanocarriers, multidrug-resistant bacteria, on-demand, synergistic treatment

References(36)

1

Jones, K. E.; Patel, N. G.; Levy, M. A.; Storeygard, A.; Balk, D.; Gittleman, J. L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993.

2

Li, L. -L.; Xu, J. -H.; Qi, G. -B.; Zhao, X. Z.; Yu, F. Q.; Wang, H. Core–shell supramolecular gelatin nanoparticles for adaptive and "on-demand" antibiotic delivery. ACS Nano 2014, 8, 4975–4983.

3

Alanis, A. J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705.

4

Zhao, Y. Y.; Chen, Z. L.; Chen, Y. F.; Xu, J.; Li, J. H.; Jiang, X. Y. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J. Am. Chem. Soc. 2013, 135, 12940–12943.

5

Andersson, D. I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478.

6

Li, W.; Dong, K.; Ren, J. S.; Qu, X. G. A β-lactamaseimprinted responsive hydrogel for the treatment of antibiotic-resistant bacteria. Angew. Chem., Int. Ed. 2016, 128, 8181–8185.

7

Chellat, M. F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem., Int. Ed. 2016, 55, 6600–6626.

8

Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387.

9

Bai, H. T.; Lv, F. T.; Liu, L. B.; Wang, S. Supramolecular antibiotic switches: A potential strategy for combating drug resistance. Chem. —Eur. J. 2016, 22, 11114–11121.

10

Campana, R.; Casettari, L.; Fagioli, L.; Cespi, M.; Bonacucina, G.; Baffone, W. Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. Int. J. Food Microbiol. 2017, 241, 132–140.

11

Duncan, B.; Li, X. N.; Landis, R. F.; Kim, S. T.; Gupta, A.; Wang, L. -S.; Ramanathan, R.; Tang, R.; Boerth, J. A.; Rotello, V. M. Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano 2015, 9, 7775–7782.

12

Landis, R. F.; Gupta, A.; Lee, Y. -W.; Wang, L. -S.; Golba, B.; Couillaud, B.; Ridolfo, R.; Das, R.; Rotello, V. M. Crosslinked polymer-stabilized nanocomposites for the treatment of bacterial biofilms. ACS Nano 2017, 11, 946–952.

13

Amato, D. N.; Amato, D. V.; Mavrodi, O. V.; Braasch, D. A.; Walley, S. E.; Douglas, J. R.; Mavrodi, D. V.; Patton, D. L. Destruction of opportunistic pathogens via polymer nanoparticle-mediated release of plant-based antimicrobial payloads. Adv. Healthcare Mater. 2016, 5, 1094–1103.

14

Wright, G. D. Opportunities for natural products in 21st century antibiotic discovery. Nat. Prod. Rep. 2017, 34, 694–701.

15

Lewis, K; Ausubel, F. M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 2006, 24, 1504–1507.

16

Batish, D. R.; Singh, H. P.; Kohli, R. K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. Forest Ecol. Manag. 2008, 256, 2166–2174.

17

Isman, M. B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608.

18

Liakos, I.; Rizzello, L.; Hajiali, H.; Brunetti, V.; Carzino, R.; Pompa, P. P.; Athanassiou, A.; Mele, E. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J. Mater. Chem. B 2015, 3, 1583–1589.

19

Feng, K.; Wen, P.; Yang, H.; Li, N.; Lou, W. Y.; Zong, M. H.; Wu, H. Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC Adv. 2017, 7, 1572–1580.

20

Ramasamy, M.; Lee, J. -H.; Lee, J. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. Int. J. Nanomed. 2017, 12, 2813–2828.

21

Chan, A. C.; Bravo Cadena, M.; Townley, H. E.; Fricker, M. D.; Thompson, I. P. Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms. J. R. Soc. Interface 2017, 14, DOI: 10.1098/rsif.2016.0650.

22

Kim, B.; Lee, E.; Kim, Y.; Park, S.; Khang, G.; Lee, D. Dual acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Adv. Funct. Mater. 2013, 23, 5091–5097.

23

Gomes, C.; Moreira, R. G.; Castell-Perez, E. Poly (DLlactide- co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 2011, 76, N16–N24.

24

Noh, J.; Kwon, B.; Han, E.; Park, M.; Yang, W.; Cho, W.; Yoo, W.; Khang, G.; Lee, D. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun. 2015, 6, 6907.

25

Mo, R.; Jiang, T. Y.; Di, J.; Tai, W. Y.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 2014, 43, 3595–3629.

26

Zhong, H. -J.; Lu, L. H.; Leung, K. -H.; Wong, C. C. L.; Peng, C.; Yan, S. -C.; Ma, D. -L.; Cai, Z. W.; Wang, H. -M. D.; Leung, C. -H. An iridium(Ⅲ)-based irreversible protein–protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem. Sci. 2015, 6, 5400–5408.

27

Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F. et al. Temperature treatment of highly porous zirconium-containing metal–organic frameworks extends drug delivery release. J. Am. Chem. Soc. 2017, 139, 7522–7532.

28

Samanta, S. K.; Quigley, J.; Vinciguerra, B.; Briken, V.; Isaacs, L. Cucurbit[7]uril enables multi-stimuli-responsive release from the self-assembled hydrophobic phase of a metal organic polyhedron. J. Am. Chem. Soc. 2017, 139, 9066–9074.

29

Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

30

Yang, X. J.; Liu, X.; Liu, Z.; Pu, F.; Ren, J. S.; Qu, X. G. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater. 2012, 24, 2890–2895.

31

Ju, E. G.; Li, Z. H.; Liu, Z.; Ren, J. S.; Qu, X. G. Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy. ACS Appl. Mat. Interfaces 2014, 6, 4364–4370.

32

Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150–3158.

33

Song, Y. -R.; Choi, M. -S.; Choi, G. -W.; Park, I. -K.; Oh, C. -S. Antibacterial activity of cinnamaldehyde and estragole extracted from plant essential oils against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Plant Pathol. J. 2016, 32, 363–370.

34

Shen, S. X.; Zhang, T. H.; Yuan, Y.; Lin, S. Y.; Xu, J. Y.; Ye, H. Q. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202.

35

Ji, H. W.; Dong, K.; Yan, Z. Q.; Ding, C.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small 2016, 12, 6200–6206.

36

Baier, G.; Cavallaro, A.; Vasilev, K.; Mailänder, V.; Musyanovych, A.; Landfester, K. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules 2013, 14, 1103–1112.

File
12274_2017_1947_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 October 2017
Revised: 29 November 2017
Accepted: 01 December 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 21210002, 21431007, 21533008, 21403209, 21601175, and 21673223) and the Jilin Province Science and Technology Development Plan Project (No. 20140101039JC).

Return