Journal Home > Volume 11 , Issue 7

We report the development of a small interfering RNA (siRNA) delivery vector based on cationic perfluorocarbon nanoemulsions. We have prepared perfluorodecalin (PFD) emulsions with a positive surface charge provided by a fluorinated poly(ethylenimine) (F-PEI). The fluorinated emulsion (F-PEI@PFD) reduced cytotoxicity of F-PEI and demonstrated effective binding with siRNAs to form nanosized emulsion polyplexes. The prepared emulsion polyplexes enhanced cellular uptake and improved endosomal escape of the siRNA. In addition to increased reporter gene silencing in multiple cancer cell lines, when compared with control F-PEI and PEI polyplexes, the siRNA emulsion polyplexes showed an excellent resistance to serum deactivation and maintained high activity, even in high-serum conditions. The F-PEI@PFD emulsion polyplexes carrying an siRNA to silence the expression of Bcl2 gene induced apoptosis and inhibited tumor growth in a melanoma mouse model in vivo and showed potential for in vivo ultrasound imaging. This study demonstrates the potential of F-PEI@PFD emulsions as a multifunctional theranostic nanoplatform for safe siRNA delivery, with integrated ultrasound imaging functionality.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy

Show Author's information Gang Chen1Kaikai Wang1Pengkai Wu1Yixin Wang1Zhanwei Zhou1Lifang Yin1Minjie Sun1David Oupický1,2( )
State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA

Abstract

We report the development of a small interfering RNA (siRNA) delivery vector based on cationic perfluorocarbon nanoemulsions. We have prepared perfluorodecalin (PFD) emulsions with a positive surface charge provided by a fluorinated poly(ethylenimine) (F-PEI). The fluorinated emulsion (F-PEI@PFD) reduced cytotoxicity of F-PEI and demonstrated effective binding with siRNAs to form nanosized emulsion polyplexes. The prepared emulsion polyplexes enhanced cellular uptake and improved endosomal escape of the siRNA. In addition to increased reporter gene silencing in multiple cancer cell lines, when compared with control F-PEI and PEI polyplexes, the siRNA emulsion polyplexes showed an excellent resistance to serum deactivation and maintained high activity, even in high-serum conditions. The F-PEI@PFD emulsion polyplexes carrying an siRNA to silence the expression of Bcl2 gene induced apoptosis and inhibited tumor growth in a melanoma mouse model in vivo and showed potential for in vivo ultrasound imaging. This study demonstrates the potential of F-PEI@PFD emulsions as a multifunctional theranostic nanoplatform for safe siRNA delivery, with integrated ultrasound imaging functionality.

Keywords: small interfering RNA (siRNA) delivery, polyplexes, fluorous interactions, tumor delivery, perfluorocarbon emulsion

References(64)

1

Wu, S. Y.; Lopez-Berestein, G.; Calin, G. A.; Sood, A. K. Rnai therapies: Drugging the undruggable. Sci. Transl. Med. 2014, 6, 240ps7.

2

Whitehead, K. A.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in sirna delivery. Nat. Rev. Drug Discov. 2009, 8, 129–138.

3

Lächelt, U.; Wagner, E. Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond). Chem. Rev. 2015, 115, 11043–11078.

4

Yamano, S.; Dai, J.; Hanatani, S.; Haku, K.; Yamanaka, T.; Ishioka, M.; Takayama, T.; Yuvienco, C.; Khapli, S.; Moursi, A. M. et al. Long-term efficient gene delivery using polyethylenimine with modified tat peptide. Biomaterials 2014, 35, 1705–1715.

5

Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581–593.

6

Kunath, K.; Von Harpe, A.; Fischer, D.; Petersen, H.; Bickel, U.; Voigt, K.; Kissel, T. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: Comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecularweight polyethylenimine. J. Control. Release 2003, 89, 113–125.

7

Ma, Y. Z.; Chen, B. Z.; He, N.; Chen, G. J.; Li, L. W.; Wu, C. Revisiting complexation between DNA and polyethylenimine: Does the disulfide linkage play a critical role in promoting gene delivery? Macromol. Biosci. 2014, 14, 1807–1815.

8

Hall, A.; Parhamifar, L.; Lange, M. K.; Meyle, K. D.; Sanderhoff, M.; Andersen, H.; Roursgaard, M.; Larsen, A. K.; Jensen, P. B.; Christensen, C. et al. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis. Biochim. Biophys. Acta 2015, 1847, 328–342.

9

Khansarizadeh, M.; Mokhtarzadeh, A.; Rashedinia, M.; Taghdisi, S. M.; Lari, P.; Abnous, K. H.; Ramezani, M. Identification of possible cytotoxicity mechanism of polyethylenimine by proteomics analysis. Hum. Exp. Toxicol. 2016, 35, 377–387.

10

Shen, W. W.; Wang, H.; Ling-Hu, Y.; Lv, J.; Chang, H.; Cheng, Y. Y. Screening of efficient polymers for sirna delivery in a library of hydrophobically modified polyethyleneimines. J. Mater. Chem. B 2016, 4, 6468–6474.

11

Park, K.; Lee, M. Y.; Kim, K. S.; Hahn, S. K. Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine-hyaluronic acid conjugate. Biomaterials 2010, 31, 5258–5265.

12

Gosselin, M. A.; Guo, W. J.; Lee, R. J. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem. 2001, 12, 989–994.

13

Breunig, M.; Lungwitz, U.; Liebl, R.; Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl. Acad. Sci. USA 2007, 104, 14454–14459.

14

Thomas, M.; Ge, Q.; Lu, J. J.; Chen, J. Z.; Klibanov, A. Cross-linked small polyethylenimines: While still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm. Res. 2005, 22, 373–380.

15

Yang, X. Z.; Du, J. Z.; Dou, S.; Mao, C. Q.; Long, H. Y.; Wang, J. Sheddable ternary nanoparticles for tumor aciditytargeted sirna delivery. ACS Nano 2012, 6, 771–781.

16

Pai Kasturi, S.; Qin, H.; Thomson, K. S.; El-Bereir, S.; Cha, S. C.; Neelapu, S.; Kwak, L. W.; Roy, K. Prophylactic anti-tumor effects in a b cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized plga microparticles. J. Control. Release 2006, 113, 261–270.

17

Oster, C. G.; Kim, N.; Grode, L.; Barbu-Tudoran, L.; Schaper, A. K.; Kaufmann, S. H. E.; Kissel, T. Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethylenimine as carriers systems for parental DNA vaccination. J. Control. Release 2005, 104, 359–377.

18

Bivasbenita, M.; Romeijn, S.; Junginger, H. E.; Borchard, G. PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium. Eur. J. Pharm. Biopharm. 2004, 58, 1–6.

19

Duan, J. L.; Dong, J. L.; Zhang, T. T.; Su, Z. Y.; Ding, J.; Zhang, Y.; Mao, X. H. Polyethyleneimine-functionalized iron oxide nanoparticles for systemic sirna delivery in experimental arthritis. Nanomedicine 2014, 9, 789–801.

20

Wang, M. M.; Liu, H. M.; Li, L.; Cheng, Y. Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 2014, 5, 3053.

21

Liu, H. M.; Wang, Y.; Wang, M. M.; Xiao, J. R.; Cheng, Y. Y. Fluorinated poly(propylenimine) dendrimers as gene vectors. Biomaterials 2014, 35, 5407–5413.

22

Wu, T.; Wang, L. H.; Ding, S. G.; You, Y. Z. Fluorinated PEG-polypeptide polyplex micelles have good serumresistance and low cytotoxicity for gene delivery. Macromol. Biosci. 2017, 17, 1700114.

23

Cheng Y. Y. Fluorinated polymers in gene delivery. Acta Polym. Sin. 2017, 1234–1245.

24

He, B. W.; Wang, Y. T.; Shao, N. M.; Chang, H.; Cheng, Y. Y. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery. Acta Biomater. 2015, 22, 111–119.

25

Wang, M. M.; Cheng, Y. Y. The effect of fluorination on the transfection efficacy of surface-engineered dendrimers. Biomaterials 2014, 35, 6603–6613.

26

Liu, H. M.; Chang, H.; Lv, J.; Jiang, C.; Li, Z. X.; Wang, F.; Wang, F.; Wang, M. M.; Liu, C. Y.; Wang, X. Y. et al. Screening of efficient sirna carriers in a library of surfaceengineered dendrimers. Sci. Rep. 2016, 6, 25069.

27

Wang, H.; Hu, J. J.; Cai, X. P.; Xiao, J. R.; Cheng, Y. Y. Self-assembled fluorodendrimers in the co-delivery of fluorinated drugs and therapeutic genes. Polym. Chem. 2016, 7, 2319–2322.

28

Xiong, S. D.; Li, L.; Jiang, J.; Tong, L. P.; Wu, S. L.; Xu, Z. S.; Chu, P. K. Cationic fluorine-containing amphiphilic graft copolymers as DNA carriers. Biomaterials 2010, 31, 2673–2685.

29

Horváth, I. T.; Rábai, J. Facile catalyst separation without water: Fluorous biphase hydroformylation of olefins. Science 1994, 266, 72–75.

30

Wang, Y. T.; Wang, M. M.; Chen, H.; Liu, H. M.; Zhang, Q.; Cheng, Y. Y. Fluorinated dendrimer for TRAIL gene therapy in cancer treatment. J. Mater. Chem. B 2016, 4, 1354–1360.

31

Criscione, J. M.; Le, B. L.; Stern, E.; Brennan, M.; Rahner, C.; Papademetris, X.; Fahmy, T. M. Self-assembly of ph-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 2009, 30, 3946–3955.

32

Takaoka, Y.; Sakamoto, T.; Tsukiji, S.; Narazaki, M.; Matsuda, T.; Tochio, H.; Shirakawa, M.; Hamachi, I. Selfassembling nanoprobes that display off/on 19F nuclear magnetic resonance signals for protein detection and imaging. Nat. Chem. 2009, 1, 557–561.

33

Wang, H.; Wang, Y. T.; Wang, Y.; Hu, J. J.; Li, T. F.; Liu, H. M.; Zhang, Q.; Cheng, Y. Y. Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem., Int. Ed. 2015, 54, 11647–11651.

34

Wang, L. H.; Wu, D. C.; Xu, H. X.; You, Y. Z. High DNA-binding affinity and gene-transfection efficacy of bioreducible cationic nanomicelles with a fluorinated core. Angew. Chem., Int. Ed. 2016, 55, 755–759.

35

Johnson, M. E.; Shon, J.; Guan, B. M.; Patterson, J. P.; Oldenhuis, N. J.; Eldredge, A. C.; Gianneschi, N. C.; Guan, Z. B. Fluorocarbon modified low-molecular-weight polyethylenimine for sirna delivery. Bioconjug. Chem. 2016, 27, 1784–1788.

36

Palmer, A. F.; Marcos, I. Blood substitutes. Annu. Rev. Biomed. Eng. 2014, 16, 77–101.

37

Yao, Y. J.; Zhang, M. M.; Liu, T.; Zhou, J.; Gao, Y.; Wen, Z. F.; Guan, J.; Zhu, J.; Lin, Z. F.; He, D. N. Perfluorocarbonencapsulated PLGA-PEG emulsions as enhancement agents for highly efficient reoxygenation to cell and organism. ACS Appl. Mater. Interfaces 2015, 7, 18369–18678.

38

Lanza, G. M.; Yu, X.; Winter, P. M.; Abendschein, D. R.; Karukstis, K. K.; Scott, M. J.; Chinen, L. K.; Fuhrhop, R. W.; Scherrer, D. E.; Wickline, S. A. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: Implications for rational therapy of restenosis. Circulation 2002, 106, 2842–4847.

39

Schmieder, A. H.; Caruthers, S. D.; Keupp, J.; Wickline, S. A.; Lanza, G. M. Recent advances in 19fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering 2015, 1, 475–489.

40

Tran, T. D.; Caruthers, S. D.; Hughes, M.; Marsh, J. N.; Cyrus, T.; Winter, P. M.; Neubauer, A. M.; Wickline, S. A.; Lanza, G. M. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int. J. Nanomedicine 2007, 2, 515–526.

41

Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat. Commun. 2012, 3, 618.

42

Winter, P. M. Perfluorocarbon nanoparticles: Evolution of a multimodality and multifunctional imaging agent. Scientifica 2014, 2014, 746574.

43

Shin, S. H.; Park, E. J.; Min, C.; Sun, I. C.; Jeon, S.; Kim, Y. H.; Kim, D. Tracking perfluorocarbon nanoemulsion delivery by 19F MRI for precise high intensity focused ultrasound tumor ablation. Theranostics 2017, 7, 562–572.

44

Wang, J. Y.; Li, P.; Tian, R.; Hu, W. J.; Zhang, Y. X.; Yuan, P.; Tang, Y. L.; Jia, Y. T.; Zhang, L. K. et al. A novel microbubble capable of ultrasound-triggered release of drug-loaded nanoparticles. J. Biomed. Nanotechnol. 2016, 12, 516–524.

45

Gao, D.; Xu, M.; Cao, Z.; Gao, J. B.; Chen, Y.; Li, Y. Q.; Yang, Z.; Xie, X. Y.; Jiang, Q.; Wang, W. et al. Ultrasoundtriggered phase-transition cationic nanodroplets for enhanced gene delivery. ACS Appl. Mater. Interfaces 2015, 7, 13524–13537.

46

Lattin, J. R.; Javadi, M.; McRae, M.; Pitt, W. G. Cytosolic delivery via escape from the endosome using emulsion droplets and ultrasound. J. Drug Target. 2015, 23, 469–479.

47

Ma, M.; Xu, H. X.; Chen, H. R.; Jia, X. Q.; Zhang, K.; Wang, Q.; Zheng, S. G.; Wu, R.; Yao, M. H.; Cai, X. J. et al. A drug–perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv. Mater. 2014, 26, 7378–7385.

48

Medina, S. H.; Michie, M. S.; Miller, S. E.; Schnermann, M. J.; Schneider, J. P. Fluorous phase-directed peptide assembly affords nano-peptisomes capable of ultrasoundtriggered cellular delivery. Angew. Chem., Int. Ed. 2017, 56, 11404–11408.

49

Fang, J. Y.; Hung, C. F.; Hua, S. C.; Hwang, T. L. Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: Drug release and cytotoxicity against cancer cells. Ultrasonics 2009, 49, 39–46.

50

Gao, D.; Gao, J. B.; Xu, M.; Cao, Z.; Zhou, L. Y.; Li, Y. Q.; Xie, X. Y.; Jiang, Q.; Wang, W.; Liu, J. Targeted ultrasound-triggered phase transition nanodroplets for her2- overexpressing breast cancer diagnosis and gene transfection. Mol. Pharmaceutics 2017, 14, 984–998.

51

Wang, K. K.; Zhang, Y. F.; Wang, J.; Yuan, A. H.; Sun, M. J.; Wu, J. H.; Hu, Y. Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.

52

Tian, J. W.; Ding, L.; Xu, H. J.; Shen, Z.; Ju, H. X.; Jia, L.; Bao, L.; Yu, J. S. Cell-specific and ph-activatable rubyrin loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J. Am. Chem. Soc. 2013, 135, 18850–18858.

53

Lv, J.; Chang, H.; Wang, Y.; Wang, M. M.; Xiao, J. R.; Zhang, Q.; Cheng, Y. Y. Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J. Mater. Chem. B 2015, 3, 642–650.

54

Neuberg, P.; Kichler, A. Chapter nine—Recent developments in nucleic acid delivery with polyethylenimines. Adv. Genet. 2014, 88, 263–288.

55

Chen, G.; Wang, K. K.; Hu, Q.; Ding, L.; Yu, F.; Zhou, Z. W.; Zhou, Y. W.; Li, J.; Sun, M. J.; Oupicky, D. Combining fluorination and bioreducibility for improved siRNA polyplex delivery. ACS Appl. Mater. Interfaces 2017, 9, 4457–4466.

56

Cook, C. A.; Hahn, K. C.; Morrissette-Mcalmon, J. B. F.; Grayson, W. L. Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 2015, 52, 376–384.

57

Castro, C. I.; Briceno, J. C. Perfluorocarbon-based oxygen carriers: Review of products and trials. Artif. Organs 2010, 34, 622–634.

58

Czabotar, P. E.; Lessene, G.; Strasser, A.; Adams, J. M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49–63.

59

Lin, C.; Zhong, Z. Y.; Lok, M. C.; Jiang, X. L.; Hennink, W. E.; Feijen, J.; Engbersen, J. F. J. Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of disulfide linkages: Synthesis and in vitro gene transfer properties. J. Control. Release 2006, 116, 130–137.

60

Deshpande, N.; Needles, A.; Willmann, J. K. Molecular ultrasound imaging: Current status and future directions. Clin. Radiol. 2010, 65, 567–581.

61

Wrobeln, A.; Schlüter, K. D.; Linders, J.; Zähres, M.; Mayer, C.; Kirsch, M.; Ferenz, K. B. Functionality of albuminderived perfluorocarbon-based artificial oxygen carriers in the langendorff-heart. Artif. Cells Nanomed. Biotechnol. 2017, 45, 723–730.

62

Díaz-López, R.; Tsapis, N.; Santin, M.; Bridal, S. L.; Nicolas, V.; Jaillard, D.; Libong, D.; Chaminade, P.; Marsaud, V.; Vauthier, C. et al. The performance of pegylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 2010, 31, 1723–1731.

63

Sun, L.; Huang, C. W.; Wu, J.; Chen, K. J.; Li, S. H.; Weisel, R. D.; Rakowski, H.; Sung, H. W.; Li, R. K. The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials 2013, 34, 2107–2116.

64

Javadi, M.; Pitt, W. G.; Tracy, C. M.; Barrow, J. R.; Willardson, B. M.; Hartley, J. M.; Tsosie, N. H. Ultrasonic gene and drug delivery using eliposomes. J. Control. Release 2013, 167, 92–100.

File
12274_2017_1946_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 September 2017
Revised: 28 November 2017
Accepted: 01 December 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Science and Technology Major Project (No. 2017YFA0205400), the Changjiang Scholar program, the National Natural Science Foundation of China (Nos. 81373983 and 81573377), China Postdoctoral Science Foundation (No. 2016M601923), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0671).

Return