Journal Home > Volume 11 , Issue 7

Catalytic hydrogenation is an important process in the chemical industry. Traditional catalysts require the effective cleavage of hydrogen molecules on the metal-catalyst surface, which is difficult to achieve with non-noble metal catalysts. In this work, we report a new hydrogenation method based on water/proton reduction, which is completely different from the catalytic cleavage of hydrogen molecules. Active hydrogen species and photo-generated electrons can be directly applied to the hydrogenation process with Cu1.94S-Zn0.23Cd0.77S semiconductor heterojunction nanorods. Nitrobenzene, with a variety of substituent groups, can be efficiently reduced to the corresponding aniline without the addition of hydrogen gas. This is a novel and direct pathway for hydrogenation using non-noble metal catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods

Show Author's information Zhanjun Yu1,§Zheng Chen1,§Yueguang Chen2,§Qing Peng1( )Rui Lin1Yu Wang1Rongan Shen1Xing Cao1Zhongbin Zhuang3( )Yadong Li1( )
Department of ChemistryTsinghua UniversityBeijing100084China
Faculty of ScienceBeijing University of Chemical TechnologyBeijing100029China
Beijing Advanced Innovation Center for Soft Matter Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China

§ Zhangjun Yu, Zheng Chen and Yueguang Chen contributed equally to this work.

Abstract

Catalytic hydrogenation is an important process in the chemical industry. Traditional catalysts require the effective cleavage of hydrogen molecules on the metal-catalyst surface, which is difficult to achieve with non-noble metal catalysts. In this work, we report a new hydrogenation method based on water/proton reduction, which is completely different from the catalytic cleavage of hydrogen molecules. Active hydrogen species and photo-generated electrons can be directly applied to the hydrogenation process with Cu1.94S-Zn0.23Cd0.77S semiconductor heterojunction nanorods. Nitrobenzene, with a variety of substituent groups, can be efficiently reduced to the corresponding aniline without the addition of hydrogen gas. This is a novel and direct pathway for hydrogenation using non-noble metal catalysts.

Keywords: selectivity, hydrogenation, photocatalytic, nitroarene, heteronanorods

References(40)

1

Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.

DOI
2

Vogt, P. F.; Gerulis, J. J. Amines, aromatic. In Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH: New York, 2000.

DOI
3

Liu, Y. G.; Lu, Y. S.; Prashad, M.; Repič, O.; Blacklock, T. J. A practical and chemoselective reduction of nitroarenes to anilines using activated iron. Adv. Synth. Catal. 2005, 347, 217–219.

4

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537–543.

5

Downing, R. S.; Kunkeler, P. J.; Bekkum, H. Catalytic syntheses of aromatic amines. Catal. Today 1997, 37, 121–136.

6

Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.

7

Wang, P.; Han, L.; Zhu, C. Z.; Zhai, Y. M.; Dong, S. J. Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Res. 2011, 4, 1153–1162.

8

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332–334.

9

Li, L. Y.; Zhou, C. S.; Zhao, H. X.; Wang, H. X.; Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene. Nano Res. 2015, 8, 709–721.

10

Shimizu, K. I.; Miyamoto, Y.; Satsuma, A. Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. J. Catal. 2010, 270, 86–94.

11

Antonetti, C.; Oubenali, M.; Galletti, A. M. R.; Serp, P.; Vannucci, G. Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. Appl. Catal. A 2012, 421–422, 99–107.

12

Tomkins, P.; Gebauer-Henke, E.; Leitner, W.; Müller, T. E. Concurrent hydrogenation of aromatic and nitro groups over carbon-supported ruthenium catalysts. ACS Catal. 2015, 5, 203–209.

13

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabean, J.; Huan, H. M.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073–1076.

14

Schwob, T.; Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem., Int. Ed. 2016, 55, 15175–15179.

15

Jagadeesh, R. V.; Stemmler, T.; Surkus, A. E.; Junge, H.; Junge, K.; Beller, M. Hydrogenation using iron oxide-based nanocatalysts for the synthesis of amines. Nat. Protoc. 2015, 10, 548–557.

16

Liu, L. C.; Concepción, P.; Corma, A. Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. J. Catal. 2016, 340, 1–9.

17

Chen, B. F.; Li, F. B.; Huang, Z. J.; Yuan, G. Q. Recyclable and selective nitroarene hydrogenation catalysts based on carbon-coated cobalt oxide nanoparticles. ChemCatChem 2016, 8, 1132–1138.

18

Gao, B.; Lin, Y.; Wei, S. J.; Zeng, J.; Liao, Y.; Chen, L. G.; Goldfeld, D.; Wang, X. P.; Luo, Y.; Dong, Z. C. et al. Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 2012, 5, 88–98.

19

Jiang, C. J.; Shang, Z. Y.; Liang, X. H. Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles. ACS Catal. 2015, 5, 4814–4818.

20

Hao, C. H.; Guo, X. N.; Pan, Y. T.; Chen, S.; Jiao, Z. F.; Yang, H.; Guo, X. Y. Visible-light-driven selective photocatalytic hydrogenation of cinnamaldehyde over Au/SiC catalysts. J. Am. Chem. Soc. 2016, 138, 9361–9364.

21

Kar, P.; Farsinezhad, S.; Mahdi, N. J.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493.

22

Pan, X. Y.; Xu, Y. J. Efficient thermal- and photocatalyst of Pd nanoparticles on TiO2 achieved by an oxygen vacancies promoted synthesis strategy. ACS Appl. Mater. Interfaces 2014, 6, 1879–1886.

23

Zhang, N.; Xu, Y. J. Aggregation- and leaching-resistant, reusable, and multifunctional Pd@CeO2 as a robust nanocatalyst achieved by a hollow core-shell strategy. Chem. Mater. 2013, 25, 1979–1988.

24

Chen, Y. G.; Zhao, S.; Wang, X.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhang, L. B.; Zhou, G. et al. Synergetic integration of Cu1.94S-ZnxCd1-xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 2016, 138, 4286–4289.

25

Marco-Contelles, J.; do Carmo Carreiras, M.; Rodríguez, C.; Villarroya, M.; García, A. G. Synthesis and pharmacology of galantamine. Chem. Rev. 2006, 106, 116–133.

26

Zhuang, Z. B.; Lu, X. T.; Peng, Q.; Li, Y. D. A facile "dispersion-decomposition" route to metal sulfide nanocrystals. Chem. -Eur. J. 2011, 17, 10445–10452.

27

Yi, L. X.; Liu, Y. Y.; Yang, N. L.; Tang, Z. Y.; Zhao, H. J.; Ma, G. H.; Su Z. G.; Wang, D. One dimensional CuInS2–ZnS heterostructured nanomaterials as low-cost and highperformance counter electrodes of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 835–840.

28

Yi, L. X.; Wang, D.; Gao, M. Y. Synthesis of Cu3SnS4 nanocrystals and nanosheets by using Cu31S16 as seeds. CrystEngComm 2012, 14, 401–404.

29

Kolny-Olesiak, J. Synthesis of copper sulphide-based hybrid nanostructures and their application in shape control of colloidal semiconductor nanocrystals. CrystEngComm 2014, 16, 9381–9390.

30

Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 2010, 4, 7303–7314.

31

Zhang, Q.; Joo, J. B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103–114.

32

Zhang, N.; Zhang, Y. H.; Pan, X. Y.; Yang, M. Y.; Xu, Y. J. Constructing ternary CdS-Graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J. Phys. Chem. C 2012, 116, 18023–18031.

33

Yang, M. Q.; Weng, B.; Xu, Y. J. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach. Langmuir 2013, 29, 10549–10558.

34

Liu, S. Q.; Xu, Y. J. Efficient electrostatic self-assembly of one-dimensional CdS-Au nanocomposites with enhanced photoactivity, not the surface plasmon resonance effect. Nanoscale 2013, 5, 9330–9339.

35

Serna, P.; Corma, A. Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes. ACS Catal. 2015, 5, 7114–7121.

36

Xu, K. L.; Zhang, Y.; Chen, X. R.; Huang, L.; Zhang, R.; Huang, J. Convenient and selective hydrogenation of nitro aromatics with a platinum nanocatalyst under ambient pressure. Adv. Synth. Catal. 2011, 353, 1260–1264.

37

Maeqawa, T.; Fujita, Y.; Sakurai, A.; Akashi, A.; Sato, M.; Oono, K.; Sajiki, H. Pd/C(en) catalyzed chemoselective hydrogenation in the presence of aryl nitriles. Chem. Pharm. Bull. 2007, 55, 837–839.

38

Yang, B.; Zhang, Q. K.; Ma, X. Y.; Kang, J. Q.; Shi, J. M.; Tang, B. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res. 2016, 9, 1879–1890.

39

Perret, N.; Wang, X. D.; Onfroy, T.; Calers, C.; Keane, M. A. Selectivity in the gas-phase hydrogenation of 4-nitrobenzaldehyde over supported Au catalysts. J. Catal. 2014, 309, 333–342.

40

Blaser, H. U.; Siegrist, U.; Steiner, H. Aromatic nitro compounds. In Fine Chemicals Through Heterogeneous Catalysis. Sheldon, R. A.; van Bekkum, H., Eds.; Wiley-VCH: Weinheim, Germany, 2001.

File
12274_2017_1944_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 September 2017
Revised: 27 September 2017
Accepted: 30 November 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China for support (Nos. 21325101, 21231005, and 21171105) and China Ministry of Science and Technology under Contract of 2016YFA (No. 0202801).

Return