Journal Home > Volume 11 , Issue 6

Two dimensional (2D) nanomaterials are promising fundamental building blocks for use in the next-generation semiconductor industry due to their unique geometry and excellent (opto)-electronic properties. However, large scale high quality fabrication of 2D nanomaterials remains challenging. Thus, the development of controllable fabrication methods for 2D materials is essential for their future practical application. In this review, we will discuss the importance of the space-confined vapor deposition strategy in the controllable fabrication of 2D materials and summarize recent progress in the utilization of this strategy for the synthesis of novel materials or structures. Using this method, various high quality ultrathin 2D materials, including large-area graphene and boron nitride, ReS2/ReSe2, HfS2, pyramid-structured multilayer MoS2, and the topological insulators Bi2Se3 and Bi2Te3, have been successfully obtained. Additionally, by utilizing van der Waals epitaxy growth substrates such as mica or other 2D materials, patterned growth of 2D nanomaterials can be easily achieved via a surface-induced growth mechanism. Finally, we provide a short prospect for future development of this strategy.


menu
Abstract
Full text
Outline
About this article

Space-confined vapor deposition synthesis of two dimensional materials

Show Author's information Shasha ZhouLin Gan( )Deli WangHuiqiao LiTianyou Zhai( )
School of Materials Science and EngineeringSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China

Abstract

Two dimensional (2D) nanomaterials are promising fundamental building blocks for use in the next-generation semiconductor industry due to their unique geometry and excellent (opto)-electronic properties. However, large scale high quality fabrication of 2D nanomaterials remains challenging. Thus, the development of controllable fabrication methods for 2D materials is essential for their future practical application. In this review, we will discuss the importance of the space-confined vapor deposition strategy in the controllable fabrication of 2D materials and summarize recent progress in the utilization of this strategy for the synthesis of novel materials or structures. Using this method, various high quality ultrathin 2D materials, including large-area graphene and boron nitride, ReS2/ReSe2, HfS2, pyramid-structured multilayer MoS2, and the topological insulators Bi2Se3 and Bi2Te3, have been successfully obtained. Additionally, by utilizing van der Waals epitaxy growth substrates such as mica or other 2D materials, patterned growth of 2D nanomaterials can be easily achieved via a surface-induced growth mechanism. Finally, we provide a short prospect for future development of this strategy.

Keywords: transition metal dichalcogenides, space confinement, two dimensional, vapor deposition

References(106)

1

Tan, C. L.; Cao, X. H.; Wu, X. -J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. -H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

2

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

3

Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

4

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.

5

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

6

Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126.

7

Guo, Y. P.; Wei, Y. Q.; Li, H. Q.; Zhai, T. Y. Layer structured materials for advanced energy storage and conversion. Small 2017, 13, 1701649.

8

Zhou, S. S.; Chen, J. N.; Gan, L.; Zhang, Q.; Zheng, Z.; Li, H. Q.; Zhai, T. Y. Scalable production of self-supported WS2/CNFs by electrospinning as the anode for highperformance lithium-ion batteries. Sci. Bull. 2016, 61, 227–235.

9

Zhuge, F. W.; Zheng, Z.; Luo, P.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol. 2017, 2, 1700005.

10

Gong, C. H.; Zhang, Y. X.; Chen, W.; Chu, J. W.; Lei, T. Y.; Pu, J. R.; Dai, L. P.; Wu, C. Y.; Cheng, Y. H.; Zhai, T. Y. et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 2017, 4, 1700231.

11

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

12

Wan, X. F.; Zhou, N.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Towards wafer-size strictly monolayer graphene on copper via cyclic atmospheric chemical vapor deposition. Carbon 2016, 110, 384–389.

13

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

14

Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099.

15

Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5030.

16

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

17

Makinistian, L.; Albanesi, E. A. First-principles calculations of the band gap and optical properties of germanium sulfide. Phys. Rev. B 2006, 74, 045206.

18

Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082.

19

Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.

20

Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289.

21

Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

22

Liu, Y. J.; Tang, M.; Meng, M. M.; Wang, M. Z.; Wu, J. X.; Yin, J. B.; Zhou, Y. B.; Guo, Y. F.; Tan, C. W.; Dang, W. H. et al. Epitaxial growth of ternary topological insulator Bi2Te2Se 2D crystals on mica. Small 2017, 13, 1603572.

23

Zhuge, F. W.; Luo, P.; Zhai, T. Y. Lead-free perovskites for X-ray detecting. Sci. Bull. 2017, 62, 1491–1493.

24

Wang, Y. G.; Gan, L.; Chen, J. N.; Yang, R.; Zhai, T. Y. Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull. 2017, in press, DOI: 10.1016/j.scib.2017.11.011.

25

Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398.

26

Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.

27

Ji, Q. Q.; Zhang, Y.; Zhang, Y. F.; Liu, Z. F. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 2015, 44, 2587–2602.

28

Zheng, S. J.; Sun, L. F.; Yin, T. T.; Dubrovkin, A. M.; Liu, F. C.; Liu, Z.; Shen, Z. X.; Fan, H. J. Monolayers of WxMo1-xS2 alloy heterostructure with in-plane composition variations. Appl. Phys. Lett. 2015, 106, 063113.

29

Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. J.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. J.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119–124.

30

Chiu, M. -H.; Zhang, C. D.; Shiu, H. -W.; Chuu, C. -P.; Chen, C. -H.; Chang, C. -Y. S.; Chen, C. -H.; Chou, M. -Y.; Shih, C. -K.; Li, L. -J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666.

31

Yu, J. H.; Lee, H. R.; Hong, S. S.; Kong, D. S.; Lee, H. W.; Wang, H. T.; Xiong, F.; Wang, S.; Cui, Y. Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 2015, 15, 1031–1035.

32

Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

33

Chen, P.; Xiang, J. Y.; Yu, H.; Zhang, J.; Xie, G. B.; Wu, S.; Lu, X. B.; Wang, G. L.; Zhao, J.; Wen, F. S. et al. Gate tunable MoS2–black phosphorus heterojunction devices. 2D Mater. 2015, 2, 034009.

34

He, Y. M.; Sobhani, A.; Lei, S. D.; Zhang, Z. H.; Gong, Y. J.; Jin, Z. H.; Zhou, W.; Yang, Y. C.; Zhang, Y.; Wang, X. F. et al. Layer engineering of 2D semiconductor junctions. Adv. Mater. 2016, 28, 5126–5132.

35

Chen, K.; Wan, X.; Xu, J. B. Epitaxial stitching and stacking growth of atomically thin transition-metal dichalcogenides (TMDCs) heterojunctions. Adv. Funct. Mater. 2017, 27, 1603884.

36

Wu, T. R.; Zhang, X. F.; Yuan, Q. H.; Xue, J. C.; Lu, G. Y.; Liu, Z. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Yu, Q. K. et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. Nat. Mater. 2016, 15, 43–47.

37

Song, X. J.; Gao, J. F.; Nie, Y. F.; Gao, T.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Chen, Y. B.; Jin, C. H.; Bachmatiuk, A. et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 2015, 8, 3164–3176.

38

Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S. Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties. Appl. Phys. Lett. 2016, 108, 042101.

39

Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.

40

Li, X. B.; Cui, F. F.; Feng, Q. L.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962.

41

Cui, F. F.; Li, X. B.; Feng, Q. L.; Yin, J. B.; Zhou, L.; Liu, D. Y.; Liu, K. Q.; He, X. X.; Liang, X.; Liu, S. Z. et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 2017, 10, 2732–2742.

42

Lin, M.; Wu, D.; Zhou, Y.; Huang, W.; Jiang, W.; Zheng, W. S.; Zhao, S. L.; Jin, C. H.; Guo, Y. F.; Peng, H. L. et al. Controlled growth of atomically thin In2Se3 flakes by van der waals epitaxy. J. Am. Chem. Soc. 2013, 135, 13274–13277.

43

Wu, J. X.; Tan, C. W.; Tan, Z. J.; Liu, Y. J.; Yin, J. B.; Dang, W. H.; Wang, M. Z.; Peng, H. L. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017, 17, 3021–3026.

44

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

45

Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 2010, 10, 4128–4133.

46

Chen, C. -C.; Kuo, C. -J.; Liao, C. -D.; Chang, C. -F.; Tseng, C. -A.; Liu, C. -R.; Chen, Y. -T. Growth of large-area graphene single crystals in confined reaction space with diffusiondriven chemical vapor deposition. Chem. Mater. 2015, 27, 6249–6258.

47

Zhang, Y.; Zhang, L. Y.; Kim, P.; Ge, M. Y.; Li, Z.; Zhou, C. W. Vapor trapping growth of single-crystalline graphene flowers: Synthesis, morphology, and electronic properties. Nano Lett. 2012, 12, 2810–2816.

48

Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.

49

Hao, Y. F.; Bharathi, M.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

50

Chen, S. S.; Ji, H. X.; Chou, H.; Li, Q. Y.; Li, H. Y.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W. W.; Ruoff, R. S. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv. Mater. 2013, 25, 2062–2065.

51

Phan, H. D.; Jung, J.; Kim, Y.; Huynh, V. N.; Lee, C. Large-area single-crystal graphene grown on a recrystallized Cu(111) surface by using a hole-pocket method. Nanoscale 2016, 8, 13781–13789.

52

Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.

53

Wang, C. C.; Chen, W.; Han, C.; Wang, G.; Tang, B. B.; Tang, C. X.; Wang, Y.; Zou, W. N.; Zhang, X. -A.; Qin, S. Q. et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Sci. Rep. 2014, 4, 4537.

54

Ding, D.; Solís-Fernández, P.; Hibino, H.; Ago, H. Spatially controlled nucleation of single-crystal graphene on Cu assisted by stacked Ni. ACS Nano 2016, 10, 11196–11204.

55

Wu, T. R.; Ding, G. Q.; Shen, H. L.; Wang, H. M.; Sun, L.; Jiang, D.; Xie, X. M.; Jiang, M. H. Triggering the continuous growth of graphene toward millimeter-sized grains. Adv. Funct. Mater. 2013, 23, 198–203.

56

Wang, H.; Wang, G. Z.; Bao, P. F.; Yang, S. L.; Zhu, W.; Xie, X.; Zhang, W. -J. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J. Am. Chem. Soc. 2012, 134, 3627–3630.

57

Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110–9117.

58

Yan, Z.; Liu, Y. Y.; Ju, L.; Peng, Z. W.; Lin, J.; Wang, G.; Zhou, H. Q.; Xiang, C. S.; Samuel, E. L. G.; Kittrell, C. et al. Large hexagonal biand trilayer graphene single crystals with varied interlayer rotations. Angew. Chem., Int. Ed. 2014, 53, 1565–1569.

59

Somani, P. R.; Somani, S. P.; Umeno, M. Planer nanographenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.

60

Pollard, A. J.; Nair, R. R.; Sabki, S. N.; Staddon, C. R.; Perdigao, L. M. A.; Hsu, C. H.; Garfitt, J. M.; Gangopadhyay, S.; Gleeson, H. F.; Geim, A. K. et al. Formation of monolayer graphene by annealing sacrificial nickel thin films. J. Phys. Chem. C. 2009, 113, 16565–16567.

61

Fang, W. J.; Hsu, A. L.; Caudillo, R.; Song, Y.; Birdwell, A. G.; Zakar, E.; Kalbac, M.; Dubey, M.; Palacios, T.; Dresselhaus, M. S. et al. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy. Nano Lett. 2013, 13, 1541–1548.

62

Fang, W. J.; Hsu, A. L.; Song, Y.; Birdwell, A. G.; Amani, M.; Dubey, M.; Dresselhaus, M. S.; Palacios, T.; Kong, J. Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. ACS Nano 2014, 8, 6491–6499.

63

Rümmeli, M. H.; Gorantla, S.; Bachmatiuk, A.; Phieler, J.; Geißler, N.; Ibrahim, I.; Pang, J. B.; Eckert, J. On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013, 25, 4861–4866.

64

Song, Y. N.; Pan, D. Y.; Cheng, Y.; Wang, P.; Zhao, P.; Wang, H. T. Growth of large graphene single crystal inside a restricted chamber by chemical vapor deposition. Carbon 2015, 95, 1027–1032.

65

Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of singleand few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64.

66

Zhang, W. S.; Zhang, P. P.; Su, Z. Q.; Wei, G. Synthesis and sensor applications of MoS2-based nanocomposites. Nanoscale 2015, 7, 18364–18378.

67

Laskar, M. R.; Ma, L.; Kannappan, S.; Park, P. S.; Krishnamoorthy, S.; Nath, D. N.; Lu, W.; Wu, Y. Y.; Rajan, S. Large area single crystal (0001) oriented MoS2. Appl. Phys. Lett. 2013, 102, 252108.

68

Liu, K. -K.; Zhang, W. J.; Lee, Y. -H.; Lin, Y. -C.; Chang, M. -T.; Su, C.; Chang, C. -S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

69

Fei, L. F.; Lei, S. J.; Zhang, W. -B.; Lu, W.; Lin, Z. Y.; Lam, C. H.; Chai, Y.; Wang, Y. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7, 12206.

70

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

71

McCreary, K. M.; Hanbicki, A. T.; Robinson, J. T.; Cobas, E.; Culbertson, J. C.; Friedman, A. L.; Jernigan, G. G.; Jonker, B. T. Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Funct. Mater. 2014, 24, 6449–6454.

72

O'Brien, M.; McEvoy, N.; Hallam, T.; Kim, H. Y.; Berner, N. C.; Hanlon, D.; Lee, K.; Coleman, J. N.; Duesberg, G. S. Transition metal dichalcogenide growth via close proximity precursor supply. Sci. Rep. 2014, 4, 7374.

73

Zhang, J.; Yu, H.; Chen, W.; Tian, X. Z.; Liu, D. H.; Cheng, M.; Xie, G. B.; Yang, W.; Yang, R.; Bai, X. D. et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 2014, 8, 6024–6030.

74

Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J. H.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.

75

Tu, Z. Y.; Li, G. D.; Ni, X.; Meng, L. X.; Bai, S.; Chen, X. B.; Lou, J. J.; Qin, Y. Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology. Appl. Phys. Lett. 2016, 109, 223101.

76

Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 2015, 5, 18596.

77

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

78

Han, G. H.; Kybert, N. J.; Naylor, C. H.; Lee, B. S.; Ping, J. L.; Park, J. H.; Kang, J.; Lee, S. Y.; Lee, Y. H.; Agarwal, R. et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6, 6128.

79

Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

80

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

81

Liu, X. C.; Qu, D. S.; Ryu, J.; Ahmed, F.; Yang, Z.; Lee, D.; Yoo, W. J. P-type polar transition of chemically doped multilayer MoS2 transistor. Adv. Mater. 2016, 28, 2345–2351.

82

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Twodimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

83

Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Spaceconfined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.

84

Zheng, B. J.; Chen, Y. F.; Wang, Z. G.; Qi, F.; Huang, Z. S.; Hao, X.; Li, P. J.; Zhang, W. L.; Li, Y. R. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater. 2016, 3, 035024.

85

Zhou, Z. P.; Ci, L. J.; Song, L.; Yan, X. Q.; Liu, D. F.; Yuan, H. J.; Gao, Y.; Wang, J. X.; Liu, L. F.; Zhou, W. Y. et al. Random networks of single-walled carbon nanotubes. J. Phys. Chem. B 2004, 108, 10751–10753.

86

Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in monoand few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

87

He, R.; Yan, J. -A.; Yin, Z. Y.; Ye, Z. P.; Ye, G. H.; Cheng, J.; Li, J.; Lui, C. H. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett. 2016, 16, 1404–1409.

88

Yang, S. X.; Cong, W.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

89

Hafeez, M.; Gan, L.; Saleem Bhatti, A.; Zhai, T. Y. Rhenium dichalcogenides (ReX2, X = S or Se): An emerging class of TMDs family. Mater. Chem. Front. 2017, 1, 1917–1932.

90

Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.

91

Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in n-layer ReSe2 and ReS2. ACS Nano 2016, 10, 2752–2760.

92

McCreary, A.; Simpson, J. R.; Wang, Y. X.; Rhodes, D.; Fujisawa, K.; Balicas, L.; Dubey, M.; Crespi, V. H.; Terrones, M.; Hight Walker, A. R. Intricate resonant Raman response in anisotropic ReS2. Nano Lett. 2017, 17, 5897–5907.

93

Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 2015, 27, 4640–4648.

94

He, X. X.; Liu, F. C.; Hu, P.; Fu, W.; Wang, X. L.; Zeng, Q. S.; Zhao, W.; Liu, Z. Chemical vapor deposition of high-quality and atomically layered ReS2. Small 2015, 11, 5423–5429.

95

Huang, W. J.; Gan, L.; Yang, H. T.; Zhou, N.; Wang, R. Y.; Wu, W. H.; Li, H. Q.; Ma, Y.; Zeng, H. B.; Zhai, T. Y. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 2017, 27, 1702448.

96

Hao, Y. F.; Meng, G. W.; Ye, C. H.; Zhang, X. R.; Zhang, L. D. Kinetics-driven growth of orthogonally branched single-crystalline magnesium oxide nanostructures. J. Phys. Chem. B 2005, 109, 11204–11208.

97

Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485–1490.

98

Zheng, W. S.; Xie, T.; Zhou, Y.; Chen, Y. L.; Jiang, W.; Zhao, S. L.; Wu, J. X.; Jing, Y. M.; Wu, Y.; Chen, G. C. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 2015, 6, 6972.

99

Koma, A. Van der Waals epitaxy—A new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 1992, 216, 72–76.

100

Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505.

101

Wang, Q. S.; Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Safdar, M.; Zhan, X. Y.; Wang, F. M.; Cheng, Z. Z.; He, J. Van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett. 2015, 15, 1183–1189.

102

Wang, F.; Wang, Z. X.; Shifa, T. A.; Wen, Y.; Wang, F. M.; Zhan, X. Y.; Wang, Q. S.; Xu, K.; Huang, Y.; Yin, L. et al. Two-dimensional non-layered materials: Synthesis, properties and applications. Adv. Funct. Mater. 2017, 27, 1603254.

103

Ling, X.; Lin, Y. X.; Ma, Q.; Wang, Z. Q.; Song, Y.; Yu, L. L.; Huang, S. X.; Fang, W. J.; Zhang, X.; Hsu, A. L. et al. Parallel stitching of 2D materials. Adv. Mater. 2016, 28, 2322–2329.

104

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

105

Li, M. Y.; Shi, Y.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p–n junction with an atomically sharp interface. Science 2015, 349, 524–528.

106

Zhou, X.; Zhou, N.; Li, C.; Song, H. Y.; Zhang, Q.; Hu, X. Z.; Gan, L.; Li, H. Q.; Lü, J. T.; Luo, J. et al. Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors. 2D Mater. 2017, 4, 025048.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 October 2017
Revised: 26 November 2017
Accepted: 29 November 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91622117, 51472097, 51727809, and 21501060), the National Key Research and Development Program of China (No. 2016YFB0401100), the National Basic Research Program of China (No. 2015CB932600), and the Fundamental Research Funds for the Central University (Nos. 2015ZDTD038 and 2017KFKJXX007).

Return