Journal Home > Volume 11 , Issue 6

Two-dimensional (2D) nanomaterials have recently attracted considerable attention due to their promising applications in next-generation electronics and optoelectronics. In particular, the large-scale synthesis of high-quality 2D materials is an essential requirement for their practical applications. Herein, we demonstrate the wafer-scale synthesis of highly crystalline and homogeneous monolayer WS2 by an enhanced chemical vapor deposition (CVD) approach, in which precise control of the precursor vapor pressure can be effectively achieved in a multi-temperature zone horizontal furnace. In contrast to conventional synthesis methods, the obtained monolayer WS2 has excellent uniformity both in terms of crystallinity and morphology across the entire substrate wafer grown (e.g., 2 inches in diameter), as corroborated by the detailed characterization. When incorporated in typical rigid photodetectors, the monolayer WS2 leads to a respectable photodetection performance, with a responsivity of 0.52 mA/W, a detectivity of 4.9 × 109 Jones, and a fast response speed (< 560 μs). Moreover, once fabricated as flexible photodetectors on polyimide, the monolayer WS2 leads to a responsivity of up to 5 mA/W. Importantly, the photocurrent maintains 89% of its initial value even after 3, 000 bending cycles. These results highlight the versatility of the present technique, which allows its applications in larger substrates, as well as the excellent mechanical flexibility and robustness of the CVD-grown, homogenous WS2 monolayers, which can promote the development of advanced flexible optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition

Show Author's information Changyong Lan1,2Ziyao Zhou1,3Zhifei Zhou2Chun Li2Lei Shu1,3Lifan Shen3,4Dapan Li1,3Ruoting Dong1SenPo Yip1,3,4Johnny C. Ho1,3,4,5( )
Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengdu610054China
Shenzhen Research InstituteCity University of Hong KongShenzhen518057China
State Key Laboratory of Millimeter WavesCity University of Hong KongKowloonHong Kong999077China
Centre for Functional PhotonicsCity University of Hong KongKowloonHong Kong999077China

Abstract

Two-dimensional (2D) nanomaterials have recently attracted considerable attention due to their promising applications in next-generation electronics and optoelectronics. In particular, the large-scale synthesis of high-quality 2D materials is an essential requirement for their practical applications. Herein, we demonstrate the wafer-scale synthesis of highly crystalline and homogeneous monolayer WS2 by an enhanced chemical vapor deposition (CVD) approach, in which precise control of the precursor vapor pressure can be effectively achieved in a multi-temperature zone horizontal furnace. In contrast to conventional synthesis methods, the obtained monolayer WS2 has excellent uniformity both in terms of crystallinity and morphology across the entire substrate wafer grown (e.g., 2 inches in diameter), as corroborated by the detailed characterization. When incorporated in typical rigid photodetectors, the monolayer WS2 leads to a respectable photodetection performance, with a responsivity of 0.52 mA/W, a detectivity of 4.9 × 109 Jones, and a fast response speed (< 560 μs). Moreover, once fabricated as flexible photodetectors on polyimide, the monolayer WS2 leads to a responsivity of up to 5 mA/W. Importantly, the photocurrent maintains 89% of its initial value even after 3, 000 bending cycles. These results highlight the versatility of the present technique, which allows its applications in larger substrates, as well as the excellent mechanical flexibility and robustness of the CVD-grown, homogenous WS2 monolayers, which can promote the development of advanced flexible optoelectronic devices.

Keywords: chemical vapor deposition, monolayer, flexible optoelectronics, WS2, wafer-scale

References(68)

1

Li, X. M.; Tao, L.; Chen, Z. F.; Fang, H.; Li, X. S.; Wang, X. R.; Xu, J. -B.; Zhu, H. W. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017, 4, 021306.

2

Tan, C. L.; Cao, X. H.; Wu, X. -J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. -H. et al. Recent advances in ultrathin two-dimensional nano-materials. Chem. Rev. 2017, 117, 6225-6331.

3

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

4

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene- like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.

5

Novoselov, K. S. Nobel lecture: Graphene: Materials in the flatland. Rev. Mod. Phys. 2011, 83, 837-849.

6

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

7

Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.

8

Liu, B. L; Abbas, A.; Zhou, C. W. Two-dimensional semiconductors: From materials preparation to electronic applications. Adv. Electron. Mater. 2017, 3, 1700045.

9

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.

10

Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664-2680.

11

Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664-3670.

12

Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

13

Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 2015, 203, 16-20.

14

Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.

15

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two- dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731-1737.

16

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

17

Chang, H. -Y.; Yang, S. X.; Lee, J.; Tao, L.; Hwang, W. -S.; Jena, D.; Lu, N. S.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446-5452.

18

Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111-4119.

19

Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Wafer- scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025-5030.

20

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two- dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.

21

Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489-1492.

22

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

23

Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324-3334.

24

Kapolnek, D.; Wu, X. H.; Heying, B.; Keller, S.; Keller, B. P.; Mishra, U. K.; DenBaars, S. P.; Speck, J. S. Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Appl. Phys. Lett. 1995, 67, 1541-1543.

25

Yu, Y. F.; Li, C.; Liu, Y.; Su, L. Q.; Zhang, Y.; Cao, L. Y. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866.

26

Gao, Y.; Liu, Z. B.; Sun, D. -M.; Huang, L.; Ma, L. -P.; Yin, L. -C.; Ma, T.; Zhang, Z.; Ma, X. -L.; Peng, L. -M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

27

Yun, S. J.; Chae, S. H.; Kim, H.; Park, J. C.; Park, J. -H.; Han, G. H.; Lee, J. S.; Kim, S. M.; Oh, H. M.; Seok, J. et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano 2015, 9, 5510-5519.

28

Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985-10994.

29

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

30

Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Optical Mater. 2014, 2, 131-136.

31

Li, S. S.; Wang, S. F.; Tang, D. -M.; Zhao, W. J.; Xu, H. L.; Chu, L. Q.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 2015, 1, 60-66.

32

Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 2015, 7, 5974-5980.

33

Jiang, X. C.; Xiong, Q. H.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214-3218.

34

Ford, A. C.; Ho, J. C.; Fan, Z. Y.; Ergen, O.; Altoe, V.; Aloni, S.; Razavi, H.; Javey, A. Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires. Nano Res. 2008, 1, 32-39.

35

Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 2014, 8, 11522-11528.

36

Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology 2011, 22, 125706.

37

Zhang, X.; Qiao, X. -F.; Shi, W.; Wu, J. -B.; Jiang, D. -S.; Tan, P. -H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757-2785.

38

McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep. 2016, 6, 35154.

39

Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210-1221.

40

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677-9683.

41

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. -H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791-797.

42

Su, L. Q.; Yu, Y. F.; Cao, L. Y.; Zhang, Y. Effects of substrate type and material-substrate bonding on high- temperature behavior of monolayer WS2. Nano Res. 2015, 8, 2686-2697.

43

Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193-198.

44

Park, Y.; Baac, H. W.; Heo, J.; Yoo, G. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 2016, 108, 083102.

45

Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104.

46

Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707-7712.

47

Li, S. -L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W. -W.; Lin, Y. -F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett. 2013, 13, 3546-3552.

48

Lee, Y.; Lee, J.; Bark, H.; Oh, I. -K.; Ryu, G. H.; Lee, Z.; Kim, H.; Cho, J. H.; Ahn, J. -H.; Lee, C. Synthesis of wafer- scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 2014, 6, 2821-2826.

49

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

50

Liu, K. -K.; Zhang, W. J.; Lee, Y. -H.; Lin, Y. -C.; Chang, M. -T.; Su, C. -Y.; Chang, C. -S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.

51

Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro- Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511-5517.

52

Pawbake, A. S.; Waykar, R. G.; Late, D. J.; Jadkar, S. R. Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity- sensing applications. ACS Appl. Mater. Interfaces 2016, 8, 3359-3365.

53

Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 2015, 7, 14974-14981.

54

Guo, N.; Hu, W. D.; Liao, L.; Yip, S.; Ho, J. C.; Miao, J. S.; Zhang, Z.; Zou, J.; Jiang, T.; Wu, S. W. et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv. Mater. 2014, 26, 8203-8209.

55

Lan, C. Y.; Li, C.; Yin, Y.; Guo, H. Y.; Wang, S. Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors. J. Mater. Chem. C 2015, 3, 8074-8079.

56

Lan, C. Y.; Li, C.; Wang, S.; He, T. Y.; Zhou, Z. F.; Wei, D. P.; Guo, H. Y.; Yang, H.; Liu, Y. Highly responsive and broadband photodetectors based on WS2-graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C 2017, 5, 1494-1500.

57

Binet, F.; Duboz, J. Y.; Rosencher, E.; Scholz, F.; Härle, V. Mechanisms of recombination in GaN photodetectors. Appl. Phys. Lett. 1996, 69, 1202-1204.

58

Chen, R. -S.; Chen, H. -Y.; Lu, C. -Y.; Chen, K. -H.; Chen, C. -P.; Chen, L. -C.; Yang, Y. -J. Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett. 2007, 91, 223106.

59

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. -H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.

60

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649-1654.

61

Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Fan, X.; Lee, S. T. Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater. 2007, 17, 1795-1800.

62

Cunningham, G.; Khan, U.; Backes, C.; Hanlon, D.; McCloskey, D.; Donegan, J. F.; Coleman, J. N. Photocon-ductivity of solution-processed MoS2 films. J. Mater. Chem. C 2013, 1, 6899-6904.

63

Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Zhai, T. Y. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater. 2016, 26, 4405-4413.

64

Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485-1490.

65

Zheng, Z. Q.; Zhang, T. M.; Yao, J. D.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.

66

Ghorbani-Asl, M.; Borini, S.; Kuc, A.; Heine, T. Strain- dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 2013, 87, 235434.

67

Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562-2572.

68

De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252-8262.

File
12274_2017_1941_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 October 2017
Revised: 23 November 2017
Accepted: 29 November 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

We acknowledge the General Research Fund of the Research Grants Council of Hong Kong SAR, China (CityU 11275916), the National Natural Science Foundation of China (Nos. 51672229, 61605024 and 61522403), the Science Technology and Innovation Committee of Shenzhen Municipality (No. JCYJ20160229165240684) and a grant from the Shenzhen Research Institute, City University of Hong Kong.

Return