Journal Home > Volume 11 , Issue 7

Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors, which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involving apH-induced core–shell micelle-to-vesicle transition to prepare ultrasound-sensitive polymeric nanospheres (polymersomes in structure) possessing multiple features, including nanosize, monodispersity, and incorporation of a phase-transitional imaging agent into the aqueous lumen. These features are not achievable via the conventional double-emulsion method for polymersome preparation. The nanospheres were constructed based on a novel triblock copolymer with dual pH sensitivity. The liquid-to-gas phase transition of the imaging agent induced by external low-frequency ultrasound may destroy the nanospheres for a rapid drug release, with simultaneous tissue-penetrating drug delivery inside a tumor. These effects may provide new opportunities for the development of an effective cancer therapy with few adverse effects.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery

Show Author's information Yiru Wang1,2,§Tinghui Yin1,2,§Zhenwei Su2,§Chen Qiu1Yong Wang2Rongqin Zheng1,2( )Meiwan Chen3Xintao Shuai1,2( )
Guangdong Provincial Key Lab of Liver Disease and Department of Medical UltrasonicsThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou510630China
PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat-sen UniversityGuangzhou510275China
State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacau999078China

§ Yiru Wang, Tinghui Yin, and Zhenwei Su contributed equally to this work.

Abstract

Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors, which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involving apH-induced core–shell micelle-to-vesicle transition to prepare ultrasound-sensitive polymeric nanospheres (polymersomes in structure) possessing multiple features, including nanosize, monodispersity, and incorporation of a phase-transitional imaging agent into the aqueous lumen. These features are not achievable via the conventional double-emulsion method for polymersome preparation. The nanospheres were constructed based on a novel triblock copolymer with dual pH sensitivity. The liquid-to-gas phase transition of the imaging agent induced by external low-frequency ultrasound may destroy the nanospheres for a rapid drug release, with simultaneous tissue-penetrating drug delivery inside a tumor. These effects may provide new opportunities for the development of an effective cancer therapy with few adverse effects.

Keywords: micelle, polymersome, morphological transition, ultrasound-sensitive, tumor-penetrating delivery

References(33)

1

Wilson, S. R.; Burns, P. N. Microbubble-enhanced US in body imaging: What role? Radiology 2010, 257, 24–39.

2

Quaia, E.; Calliada, F.; Bertolotto, M.; Rossi, S.; Garioni, L.; Rosa, L.; Pozzi-Mucelli, R. Characterization of focal liver lesions with contrast-specific US modes and a sulfur hexafluoride-filled microbubble contrast agent: Diagnostic performance and confidence. Radiology 2004, 232, 420–430.

3

Unger, E. C.; Porter, T.; Culp, W.; Labell, R.; Matsunaga, T.; Zutshi, R. Therapeutic applications of lipid-coated microbubbles. Adv. Drug Delivery Rev. 2004, 56, 1291–1314.

4

Chen, Y.; Meng, Q. S.; Wu, M. Y.; Wang, S. G.; Xu, P. F.; Chen, H. R.; Li, Y. P.; Zhang, L. X.; Wang, L. Z.; Shi, J. L. Hollow mesoporous organosilica nanoparticles: A generic intelligent framework-hybridization approach for biomedicine. J. Am. Chem. Soc. 2014, 136, 16326–16334.

5

Hernot, S.; Klibanov, A. L. Microbubbles in ultrasound- triggered drug and gene delivery. Adv. Drug Delivery Rev. 2008, 60, 1153–1166.

6

Ferrara, K.; Pollard, R.; Borden, M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415–447.

7

Yin, T. H.; Wang, P.; Li, J. G.; Zheng, R. Q.; Zheng, B. W.; Cheng, D.; Li, R. T.; Lai, J. Y.; Shuai, X. T. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 2013, 34, 4532–4543.

8

Huynh, E.; Lovell, J. F.; Helfield, B. L.; Jeon, M.; Kim, C.; Goertz, D. E.; Wilson, B. C.; Zheng, G. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J. Am. Chem. Soc. 2012, 134, 16464–16467.

9

Zhou, Y.; Wang, Z. G.; Chen, Y.; Shen, H. X.; Luo, Z. C.; Li, A.; Wang, Q.; Ran, H. T.; Li, P.; Song, W. X. et al. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv. Mater. 2013, 25, 4123–4130.

10

Zhang, J.; Coulston, R. J.; Jones, S. T.; Geng, J.; Scherman, O. A.; Abell, C. One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 2012, 335, 690–694.

11

Shapiro, M. G.; Goodwill, P. W.; Neogy, A.; Yin, M.; Foster, F. S.; Schaffer, D. V.; Conolly, S. M. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 2014, 9, 311–316.

12

Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumori-tropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986, 46, 6387–6392.

13

Li, W. P.; Su, C. H.; Chang, Y. C.; Lin, Y. J.; Yeh, C. S. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano 2016, 10, 2017–2027.

14

Liao, J. F.; Wang, C.; Wang, Y. J.; Luo, F.; Qian, Z. Y. Recent advances in formation, properties, and applications of polymersomes. Curr. Pharm. Design 2012, 18, 3432–3441.

15

Qi, W.; Ghoroghchian, P. P.; Li, G. Z.; Hammer, D. A.; Therien, M. J. Aqueous self-assembly of poly(ethylene oxide)-block- poly(ε-caprolactone) (PEO-b-PCL) copolymers: Disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles. Nanoscale 2013, 5, 10908–10915.

16

Nagayasu, A.; Uchiyama, K.; Kiwada, H. The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Delivery Rev. 1999, 40, 75–87.

17

Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

18

Yang, P.; Li, D.; Jin, S.; Ding, J.; Guo, J.; Shi, W. B.; Wang, C. C. Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 2014, 35, 2079–2088.

19

Ma, M.; Xu, H. X.; Chen, H. R.; Jia, X. Q.; Zhang, K.; Wang, Q.; Zheng, S. G.; Wu, R.; Yao, M. H.; Cai, X. J. et al. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv. Mater. 2014, 26, 7378–7385.

20

Niu, D. C.; Wang, X.; Li, Y. S.; Zheng, Y. Y.; Li, F. Q.; Chen, H. R.; Gu, J. L.; Zhao, W. R.; Shi, J. L. Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv. Mater. 2013, 25, 2686–2692.

21

Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 2003, 125, 3493–3502.

22

Chew, S. A.; Hacker, M. C.; Saraf, A.; Raphael, R. M.; Kasper, F. K.; Mikos, A. G. Altering amine basicities in biodegradable branched polycationic polymers for nonviral gene delivery. Biomacromolecules 2010, 11, 600–609.

23

Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(ε-capr-olactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control Release 2004, 98, 415–426.

24

Zhao, C. X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Delivery Rev. 2013, 65, 1420–1446.

25

Ernsting, M. J.; Murakami, M.; Roy, A.; Li, S. D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control Release 2013, 172, 782–794.

26

Santos, A. C.; Cunha, J.; Veiga, F.; Cordeiro-da-Silva, A.; Ribeiro, A. J. Ultrasonication of insulin-loaded microgel particles produced by internal gelation: Impact on particle's size and insulin bioactivity. Carbohydr Polym. 2013, 98, 1397–1408.

27

Sun, Q. H.; Sun, X. R.; Ma, X. P.; Zhou, Z. X.; Jin, E. L.; Zhang, B.; Shen, Y. Q.; van Kirk, E. A.; Murdoch, W. J.; Lott, J. R. et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater. 2014, 26, 7615–7621.

28

Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909–1915.

29

Seo, M.; Matsuura, N. Monodisperse, submicrometer droplets via condensation of microfluidic-generated gas bubbles. Small 2012, 8, 2704–2714.

30

Lee, J. Y.; Carugo, D.; Crake, C.; Owen, J.; de Saint. V. M.; Seth, A.; Coussios, C.; Stride, E. Nanoparticle-loaded protein-polymer nanodroplets for improved stability and conversion efficiency in ultrasound imaging and drug delivery. Adv. Mater. 2015, 27, 5484–5492.

31

Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

32

[32] Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumors depends on size. Nat. Nanotechnol. 2011, 6, 815–825.

33

[33] Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.

File
12274_2017_1939_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 September 2017
Revised: 24 November 2017
Accepted: 25 November 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2015CB755500), the National Natural Science Foundation of China (Nos. U1401242, 51225305, and 81430038), the Natural Science Foundation of the Guangdong Province (No. 2014A030312018), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2013S086), and the Macao Science and Technology Development Fund (No. 096/2015/A3).

Return