Journal Home > Volume 11 , Issue 11

In this study, 1, 2-bis(diphenylphosphino)ethane (dppe) ligands are used to synthesize gold nanoclusters with an icosahedral Au13 core. The nanoclusters are characterized and formulated as [Au13(dppe)5Cl2]Cl3 using synchrotron radiation X-ray diffraction, UV/Vis absorption spectroscopy, electrospray ionization mass spectrometry, and density functional theory (DFT) calculations. The bidentate feature of dppe ligands and the positions of coordinating surface gold atoms induce a helical arrangement that forms a propeller-like structure, which reduces the symmetry of the gold nanocluster to C1. Therefore, dppe ligands perform as a directing agent to create chiral an ansa metallamacrocycle [Au13(dppe)5Cl2]3+ nanocluster, as confirmed by simulated electronic circular dichroism spectrum. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of the [Au13(dppe)5Cl2]3+ cluster is determined as approx. 1.9 eV, and further confirmed by ultraviolet photoemission spectroscopy analysis and DFT simulation. Furthermore, the photoactivity of [Au13(dppe)5Cl2]3+ is investigated, with the nanocluster shown to possess near-infrared photoluminescence properties, which can be employed for 1O2 photogeneration. The quantum yield of 1O2 photogeneration using the [Au13(dppe)5Cl2]3+ nanocluster is up to 0.71, which is considerably higher than those of anthracene (an organic dye), and Au25 and Au38 nanoclusters.

File
12274_2017_1935_MOESM1_ESM.pdf (2.2 MB)
12274_2017_1935_MOESM2_ESM.cif (185 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 September 2017
Revised: 30 October 2017
Accepted: 25 November 2017
Published: 12 November 2018
Issue date: November 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

G. L. acknowledges financial supports by the fund of the National Natural Science Foundation of China (No. 21701168) and the Liaoning Natural Science Foundation (No. 20170540897), and beamline BL14B (Shanghai Synchrotron Radiation Facility) for providing the beam time. A portion of this report was prepared as an account of work sponsored by an agency of the United States Government (D. R. K.). Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Return