Journal Home > Volume 11 , Issue 6

Nanowire devices have attracted considerable attention because of their unique structure and novel properties, and have opened up significant development opportunities. However, not many studies have focused on their stability and durability under practical conditions, which limits the rapid development of real applications. Herein, we systematically investigate three different treatments, polymer coating, inert atmosphere protection, and thickness-induced self-protection, to protect the tellurium nanowire devices from oxidation when exposed to open air. The degree of oxidation was monitored by examining changes in the valence states of tellurium element and in the morphology of the nanowires. After the protective treatments, the tellurium nanowire devices showed improved stability and remained stable even after 800 days of storage. This work highlights the importance of investigating the stability of nanowire devices, especially for their practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stability and protection of nanowire devices in air

Show Author's information Zhen He1,§Muhammad Hassan1,§Huan-Xin Ju2Rui Wang1Jin-Long Wang1Jia-Fu Chen1Jun-Fa Zhu2Jian-Wei Liu1( )Shu-Hong Yu1( )
Division of Nanomaterials & ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryCAS Center for Excellence in NanoscienceHefei Science Center of CASUniversity of Science and Technology of ChinaHefei230026China
National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefei230026China

§ Zhen He and Muhammad Hassan contributed equally to this work.

Abstract

Nanowire devices have attracted considerable attention because of their unique structure and novel properties, and have opened up significant development opportunities. However, not many studies have focused on their stability and durability under practical conditions, which limits the rapid development of real applications. Herein, we systematically investigate three different treatments, polymer coating, inert atmosphere protection, and thickness-induced self-protection, to protect the tellurium nanowire devices from oxidation when exposed to open air. The degree of oxidation was monitored by examining changes in the valence states of tellurium element and in the morphology of the nanowires. After the protective treatments, the tellurium nanowire devices showed improved stability and remained stable even after 800 days of storage. This work highlights the importance of investigating the stability of nanowire devices, especially for their practical applications.

Keywords: stability, tellurium, assembly, nanowires, protection, nanowire devices

References(36)

1

Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem., Int. Ed. 2010, 49, 1362-1395.

2

Shoaib, M.; Zhang, X. H.; Wang, X. X.; Zhou, H.; Xu, T.; Wang, X.; Hu, X. L.; Liu, H. W.; Fan, X. P.; Zheng, W. H. et al. Directional growth of ultra-long CsPbBr3 perovskite nanowires for high performance photodetectors. J. Am. Chem. Soc. 2017, 139, 15592-15595.

3

Tan, H.; Fan, C.; Ma, L.; Zhang, X. H.; Fan, P.; Yang, Y. K.; Hu, W.; Zhou, H.; Zhuang, X. J.; Zhu, X. L. et al. Single-crystalline ingaas nanowires for room-temperature high-performance near-infrared photodetectors. Nano-Micro Lett. 2016, 8, 29-35.

4

Wu, J. B.; Pan, Y. -T.; Su, D.; Yang, H. Ultrathin and stable agau alloy nanowires. Sci. China Mater. 2015, 58, 595-602.

5

Zheng, Z.; Gan, L.; Zhai, T. Y. Electrospun nanowire arrays for electronics and optoelectronics. Sci. China Mater. 2016, 59, 200-216.

6

Hsu, P. -C.; Wang, S.; Wu, H.; Narasimhan, V. K.; Kong, D. S.; Lee, H. R.; Cui, Y. Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nat. Commun. 2013, 4, 2522.

7

Kim, K. K.; Hong, S.; Cho, H. M.; Lee, J.; Suh, Y. D.; Ham, J.; Ko, S. H. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 2015, 15, 5240-5247.

8

Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527-546.

9

Xue, F.; Zhang, L. M.; Feng, X. L.; Hu, G. F.; Fan, F. R.; Wen, X. N.; Zheng, L.; Wang, Z. L. Influence of external electric field on piezotronic effect in ZnO nanowires. Nano Res. 2015, 8, 2390-2399.

10

Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. F.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8, 1590-1600.

11

Dou, L. T.; Cui, F.; Yu, Y.; Khanarian, G.; Eaton, S. W.; Yang, Q.; Resasco, J.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. D. Solution-processed copper/reduced-graphene-oxide core/shell nanowire transparent conductors. ACS Nano 2016, 10, 2600-2606.

12

Zhou, W.; Dai, X. C.; Fu, T. M.; Xie, C.; Liu, J.; Lieber, C. M. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 2014, 14, 1614-1619.

13

Lan, W. J.; Yu, S. H.; Qian, H. S.; Wan, Y. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: Morphology change, crystallization, and transformation into TeO2 in different solvents. Langmuir 2007, 23, 3409-3417.

14

Xu, L.; Liang, H. -W.; Li, H. -H.; Wang, K.; Yang, Y.; Song, L. -T.; Wang, X.; Yu, S. -H. Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: An emerging platform for chemical transformation and material design. Nano Res. 2015, 8, 1081-1097.

15

Xu, L.; Yang, Y.; Hu, Z. W.; Yu, S. H. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano 2016, 10, 3823-3834.

16

Zare, B.; Sepehrizadeh, Z.; Faramarzi, M. A.; Soltany-Rez-aee-Rad, M.; Rezaie, S.; Shahverdi, A. R. Antifungal activity of biogenic tellurium nanoparticles against Candida albicans and its effects on squalene monooxygenase gene expression. Biotech. Appl. Biochem. 2014, 61, 395-400.

17

Lee, T. I.; Lee, S.; Lee, E.; Sohn, S.; Lee, Y.; Lee, S.; Moon, G.; Kim, D.; Kim, Y. S.; Myoung, J. M. et al. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 2013, 25, 2920-2925.

18

Wang, Y.; Tang, Z. Y.; Podsiadlo, P.; Elkasabi, Y.; Lahann, J.; Kotov, N. A. Mirror-like photoconductive layer-by-layer thin films of te nanowires: The fusion of semiconductor, metal, and insulator properties. Adv. Mater. 2006, 18, 518-522.

19

Liu, J. -W.; Chen, F.; Zhang, M.; Qi, H.; Zhang, C. -L.; Yu, S. -H. Rapid microwave-assisted synthesis of uniform ultralong te nanowires, optical property, and chemical stability. Langmuir 2010, 26, 11372-11377.

20

Carotenuto, G.; Palomba, M.; De Nicola, S.; Ambrosone, G.; Coscia, U. Structural and photoconductivity properties of tellurium/pmma films. Nanoscale Res. Lett. 2015, 10, 313.

21

Yang, H. R.; Bahk, J. H.; Day, T.; Mohammed, A. M. S.; Snyder, G. J.; Shakouri, A.; Wu, Y. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking. Nano Lett. 2015, 15, 1349-1355.

22

Yang, Y.; Lin, Z. -H.; Hou, T.; Zhang, F.; Wang, Z. L. Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Res. 2012, 5, 888-895.

23

Sandeep, C. S. S.; Samal, A. K.; Pradeep, T.; Philip, R. Optical limiting properties of Te and Ag2Te nanowires. Chem. Phys. Lett. 2010, 485, 326-330.

24

Rheem, Y.; Chang, C. H.; Hangarter, C. M.; Park, D. -Y.; Lee, K. -H.; Jeong, Y. -S.; Myung, N. V. Synthesis of tellurium nanotubes by galvanic displacement. Electrochim. Acta 2010, 55, 2472-2476.

25

Yuan, J.; Gao, H. T.; Schacher, F.; Xu, Y. Y.; Richter, R.; Tremel, W.; Muller, A. H. Alignment of tellurium nanorods via a magnetization-alignment-demagnetization ("MAD") process assisted by an external magnetic field. ACS Nano 2009, 3, 1441-1450.

26

Xu, W. H.; Song, J. M.; Sun, L.; Yang, J. L.; Hu, W. P.; Ji, Z. Y.; Yu, S. H. Structural, electrical, and photoconductive properties of individual single-crystalline tellurium nanotubes synthesized by a chemical route: Doping effects on electrical structure. Small 2008, 4, 888-893.

27

She, G. W.; Shi, W. S.; Zhang, X. H.; Wong, T. L.; Cai, Y.; Wang, N. Template-free electrodeposition of one-dimensional nanostructures of tellurium. Cryst. Growth Des. 2008, 9, 663-666.

28

Xi, G. C.; Liu, Y. K.; Wang, X. Q.; Liu, X. Y.; Peng, Y. Y.; Qian, Y. T. Large-scale synthesis, growth mechanism, and photoluminescence of ultrathin te nanowires. Cryst. Growth Des. 2006, 6, 2567-2570.

29

Zhao, A.; Zhang, L.; Pang, Y.; Ye, C. Ordered tellurium nanowire arrays and their optical properties. Appl. Phy. A 2005, 80, 1725-1728.

30

Ku, J. -R.; Vidu, R.; Stroeve, P. Mechanism of film growth of tellurium by electrochemical deposition in the presence and absence of cadmium ions. J. Phys. Chem. B 2005, 109, 21779-21787.

31

Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830-3835.

32

He, Z.; Yang, Y.; Liu, J. W.; Yu, S. H. Emerging tellurium nanostructures: Controllable synthesis and their applications. Chem. Soc. Rev. 2017, 46, 2732-2753.

33

Liu, J. -W.; Xu, J.; Hu, W.; Yang, J. -L.; Yu, S. -H. Systematic synthesis of tellurium nanostructures and their optical properties: From nanoparticles to nanorods, nanowires, and nanotubes. ChemNanoMat 2016, 2, 167-170.

34
Doh, W. H.; Papaefthimiou, V.; Zafeiratos, S. Applications of synchrotron-based X-ray photoelectron spectroscopy in the characterization of nanomaterials. In Surface science tools for nanomaterials characterization. Kumar, C. S. S. R., Ed.; Springer: Berlin, Heidelberg, 2015; pp 317-366.https://doi.org/10.1007/978-3-662-44551-8_9
DOI
35

Shavorskiy, A.; Karslioglu, O.; Zegkinoglou, I.; Bluhm, H. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy. Synchrotron Radiat. News 2014, 27, 14-23.

36

Bahl, M. K.; Watson, R. L.; Irgolic, K. J. X-ray photoemission studies of tellurium and some of its compounds. J. Chem. Phys. 1977, 66, 5526-5535.

File
12274_2017_1932_MOESM1_ESM.pdf (903.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 October 2017
Revised: 15 November 2017
Accepted: 21 November 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

We acknowledge the funding support from the National Natural Science Foundation of China (Nos. 21431006, 21761132008, 51471157, and 21401183), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH036), the National Basic Research Program of China (No. 2014CB931800), and the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015-HSC-UE007). The Youth Innovation Promotion Association of CAS (No. 2014298), the Anhui Provincial Natural Science Foundation (No. 1508085QB28) are acknowledged. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. We thank all the team members at Catalysis and Surface Science Beamline of National Synchrotron Radiation Laboratory (NSRL).

Return