Journal Home > Volume 11 , Issue 6

In the present work, we develop a scalable and inexpensive design for lithium-sulfur (Li-S) batteries by capping a flexible gel polymer/carbon nanofiber (CNF)composite membrane onto a free-standing and binder-free CNF + Li2S6 cathode, thus achieving a three-dimensional (3D) structural design. The CNF network is used as the current collector and S holder to overcome the insulating nature and volume expansion of S, while the composite membrane comprises a gel polymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), and CNF additive is used as an interlayer to trap polysulfides and recycle the remaining S species, leading to a high specific capacity and long cycle life. This 3D structure enables excellent cyclability for 500 cycles at 0.5 ℃ with a small capacity decay of 0.092% per cycle. Furthermore, an outstanding cycle stability was also achieved at even higher current densities (1.0 to 2.0 ℃), indicating its good potential for practical applications of Li-S batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Functional interlayer of PVDF-HFP and carbon nanofiber for long-life lithium-sulfur batteries

Show Author's information Anyi Zhang1,§Xin Fang1,§Chenfei Shen1Yihang Liu2In Gi Seo1Yuqiang Ma3Liang Chen2Patrick Cottingham4Chongwu Zhou2( )
Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCalifornia90089USA
Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCalifornia90089USA
Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesCalifornia90089USA
Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia90089USA

§ Anyi Zhang and Xin Fang contributed equally in this work.

Abstract

In the present work, we develop a scalable and inexpensive design for lithium-sulfur (Li-S) batteries by capping a flexible gel polymer/carbon nanofiber (CNF)composite membrane onto a free-standing and binder-free CNF + Li2S6 cathode, thus achieving a three-dimensional (3D) structural design. The CNF network is used as the current collector and S holder to overcome the insulating nature and volume expansion of S, while the composite membrane comprises a gel polymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), and CNF additive is used as an interlayer to trap polysulfides and recycle the remaining S species, leading to a high specific capacity and long cycle life. This 3D structure enables excellent cyclability for 500 cycles at 0.5 ℃ with a small capacity decay of 0.092% per cycle. Furthermore, an outstanding cycle stability was also achieved at even higher current densities (1.0 to 2.0 ℃), indicating its good potential for practical applications of Li-S batteries.

Keywords: lithium-sulfur batteries, carbon nanofiber, poly(vinylidene fluorideco-hexafluoropropylene) (PVDF-HFP), gel polymer electrolyte, conductive network

References(58)

1

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density. Mat. Res. Bull. 1980, 15, 783–789.

DOI
2

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

3

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

4

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

5

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

6

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904– 5908.

7

Manthiram, A.; Fu, Y. Z.; Su, Y. -S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

8

Fang, R. P.; Zhao, S. Y.; Pei, S. F.; Qian, X. T.; Hou, P. X.; Cheng, H. M.; Liu, C.; Li, F. Toward more reliable lithium-sulfur batteries: An all-graphene cathode structure. ACS Nano 2016, 10, 8676– 8682.

9

Busche, M. R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J. Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. J. Power Sources 2014, 259, 289299.

10

Crowther, O.; West, A. C. Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 2008, 155, A806– A811.

11

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.

12

Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.

13

Cheng, X. -B.; Huang, J. -Q.; Zhang, Q.; Peng, H. -J.; Zhao, M. -Q.; Wei, F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy 2014, 4, 65–72.

14

Huang, J. -Q.; Liu, X. -F.; Zhang, Q.; Chen, C. -M.; Zhao, M. -Q.; Zhang, S. -M.; Zhu, W.; Qian, W. -Z.; Wei, F. Entrapment of sulfur in hierarchical porous graphene for lithium–sulfur batteries with high rate performance from -40 to 60 ℃. Nano Energy 2013, 2, 314–321.

15

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.

16

Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. Graphene/single-walled carbon nanotube hybrides: One-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano 2012, 6, 10759–10769.

17

Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.

18

Fang, X.; Shen, C. F.; Ge, M. Y.; Rong, J. P.; Liu, Y. H.; Zhang, A. Y.; Wei, F.; Zhou, C. W. High-power lithium ion batteries based on flexible and light-weight cathode of LiNi0.5Mn1.5O4/carbon nanotube film. Nano Energy 2015, 12, 43–51.

19

Liu, Y. H.; Fang, X.; Ge, M. Y.; Rong, J. P.; Shen, C. F.; Zhang, A. Y.; Enaya, H. A.; Zhou, C. W. SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy 2015, 16, 399–407.

20

Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428–3436.

21

Xu, Z. -L.; Zhang, B.; Kim, J. -K. Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities. Nano Energy 2014, 6, 27–35.

22

Cheng, Y. L.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L. Y.; Li, T. Q.; Hu, Z. M.; Wang, B.; Wan, J.; Zhou, J. Flexible and cross- linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015, 15, 66–74.

23

Li, M. Y.; Zu, M.; Yu, J. S.; Cheng, H. F.; Li, Q. W. Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 2017, 13, 1602994.

24

Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder- free cathode for rechargeable Li-S batteries. Adv. Mater. 2011, 23, 5641–5644.

25

Zhou, G. M.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L. C.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. -M. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci. 2012, 5, 8901–8906.

26

Yao, H.; Zheng, G.; Hsu, P. C.; Kong, D.; Cha, J. J.; Li, W.; Seh, Z. W.; McDowell, M. T.; Yan, K.; Liang, Z. et al. Improving lithium-sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nat. Commun. 2014, 5, 3943.

27

Yu, X. W.; Manthiram, A. A class of polysulfide catholytes for lithium-sulfur batteries: Energy density, cyclability, and voltage enhancement. Phys. Chem. Chem. Phys. 2015, 17, 2127–2136.

28

Pu, X.; Yang, G.; Yu, C. Liquid-type cathode enabled by 3D sponge-like carbon nanotubes for high energy density and long cycling life of Li-S batteries. Adv. Mater. 2014, 26, 7456–7461.

29

Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/ graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.

30

Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.

31

Su, Y. S.; Manthiram, A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 2012, 48, 8817–8819.

32

Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. W.; Wang, S. G.; Huang, K.; Yin, L. C.; Li, F.; Cheng, H. M. A graphene-pure- sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 2014, 26, 625–631.

33

Liu, M.; Qin, X. Y.; He, Y. B.; Li, B. H.; Kang, F. Y. Recent innovative configurations in high-energy lithium–sulfur batteries J. Mater. Chem. A 2017, 5, 5222.

34

Kim, H. M.; Hwang, J. Y.; Manthiram, A.; Sun, Y. K. High- performance lithium-sulfur batteries with a self-assembled multiwall carbon nanotube interlayer and a robust electrode- electrolyte interface. ACS Appl. Mater. Interfaces 2016, 8, 983–987.

35

Ma, Z. L.; Li, Z.; Hu, K.; Liu, D. D.; Huo, J.; Wang, S. Y. The enhancement of polysulfide absorbsion in LiS batteries by hierarchically porous CoS2/carbon paper interlayer. J. Power Sources 2016, 325, 71–78.

36

Shin, J. H.; Jung, S. S.; Kim, K. W.; Ahn, H. J. Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery. J. Mater. Sci. Mater. Electron. 2002, 13, 727–733.

37

Wang, J.; Yang, J.; Wan, C.; Du, K.; Xie, J.; Xu, N. Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 2003, 13, 487–492.

38

Zhang, S. S.; Tran, D. T. How a gel polymer electrolyte affects performance of lithium/sulfur batteries. Electrochim. Acta 2013, 114, 296–302.

39

Rao, M. M.; Geng, X. Y.; Li, X. P.; Hu, S. J.; Li, W. S. Lithium- sulfur cell with combining carbon nanofibers–sulfur cathode and gel polymer electrolyte. J. Power Sources 2012, 212, 179–185.

40

Liu, M.; Ren, Y. X.; Zhou, D.; Jiang, H. R.; Kang, F. Y.; Zhao, T. S. A lithium/polysulfide battery with dual-working mode enabled by liquid fuel and acrylate-based gel polymer electrolyte. ACS Appl. Mater. Interfaces 2017, 9, 2526-2534.

41

Tatsuma, T.; Taguchi, M.; Oyama, N. Inhibition effect of covalently cross-linked gel electrolytes on lithium dendrite formation. Electrochim. Acta 2001, 46, 1201–1205.

42

Manuel Stephan, A. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42.

43

Zhao, Y.; Zhang, Y. G.; Gosselink, D.; Doan, T. N.; Sadhu, M.; Cheang, H. J.; Chen, P. Polymer electrolytes for lithium/sulfur batteries. Membranes 2012, 2, 553–564.

44

Stephan, A. M.; Saito, Y. Ionic conductivity and diffusion coefficient studies of PVdF–HFP polymer electrolytes prepared using phase inversion technique. Solid State Ion. 2002, 148, 475–481.

45

Cao, J. H.; Zhu, B. K.; Xu, Y. Y. Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. J. Membrane Sci. 2006, 281, 446–453.

46

Kim, K. M.; Park, N. G.; Ryu, K. S.; Chang, S. H. Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods. Electrochim. Acta 2006, 51, 5636–5644.

47

Pu, W. H.; He, X. M.; Wang, L.; Jiang, C. Y.; Wan, C. R. Preparation of PVDF–HFP microporous membrane for Li-ion batteries by phase inversion. J. Membrane Sci. 2006, 272, 11–14.

48

Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X.; Li, Y. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem. Commun. 2002, 4, 499– 502.

49

Yao, H. B.; Yan, K.; Li, W. Y.; Zheng, G. Y.; Kong, D. S.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Improved lithium– sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ. Sci. 2014, 7, 3381–3390.

50

Abraham, K. M.; Jiang, Z.; Carroll, B. Highly conductive PEO-like polymer electrolytes. Chem. Mater. 1997, 9, 1978–1988.

51

Yang, J.; Xie, J.; Zhou, X. Y.; Zou, Y. L.; Tang, J. J.; Wang, S. C.; Chen, F.; Wang, L. Y. Functionalized N-doped porous carbon nanofiber webs for a lithium–sulfur battery with high capacity and rate performance. J. Phys. Chem. C 2014, 118, 1800–1807.

52

Li, Q.; Zhang, Z. A.; Zhang, K.; Fang, J.; Lai, Y. Q.; Li, J. A simple synthesis of hollow carbon nanofiber-sulfur composite via mixed-solvent process for lithium–sulfur batteries. J. Power Sources 2014, 256, 137–144.

53

Zheng, G. Y.; Zhang, Q. F.; Cha, J. J.; Yang, Y.; Li, W. Y.; Seh, Z. W.; Cui, Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 2013, 13, 1265–1270.

54

Yao, H. B.; Zheng, G. Y.; Li, W. Y.; McDowell, M. T.; Seh, Z. W.; Liu, N.; Lu, Z. D.; Cui, Y. Crab shells as sustainable templates from nature for nanostructured battery electrodes. Nano Lett. 2013, 13, 3385–3390.

55

Lu, S. T.; Cheng, Y. W.; Wu, X. H.; Liu, J. Significantly improved long-cycle stability in high-rate Li-S batteries enabled by coaxial graphene wrapping over sulfur-coated carbon nanofibers. Nano Lett. 2013, 13, 2485–2489.

56

Jeddi, K.; Sarikhani, K.; Qazvini, N. T.; Chen, P. Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles. J. Power Sources 2014, 245, 656–662.

57

Yoo, J.; Cho, S. J.; Jung, G. Y.; Kim, S. H.; Choi, K. H.; Kim, J. H.; Lee, C. K.; Kwak, S. K.; Lee, S. Y. COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries. Nano Lett. 2016, 16, 3292–3300.

58

Barchasz, C.; Molton, F.; Duboc, C.; Lepretre, J. C.; Patoux, S.; Alloin, F. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal. Chem. 2012, 84, 3973–3980.

File
12274_2017_1929_MOESM1_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 September 2017
Revised: 08 November 2017
Accepted: 20 November 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

The SEM images used in this article were generated at the Center for Electron Microscopy and Microanalysis, University of Southern California. The EIS data used in this article was collected in Dr. Stephen Cronin's lab. The BET data used in this article was collected in Dr. Richard L. Brutchey's lab.

Return