Journal Home > Volume 11 , Issue 7

Multidrug resistance proteins (MDRPs), which are implicated in the mediation of multidrug resistance in tumors, represent the main obstacle to successful chemotherapy. As curcumin (Cur) exerts inhibitory effects on both the expression and function of MDRPs, a nanocarrier for the co-delivery of Cur and doxorubicin (DOX) was prepared to overcome MDR tumors through their synergistic effects. Owing to the overexpression of legumain in tumors, the release profile of DOX from this nanocarrier was designed to be legumain modulated, which was achieved by bridging DOX to a basic material (chitosan) with a legumain-sensitive peptide. Compared with nanoparticles that only contain DOX, the coadministration of DOX and Cur significantly inhibited multidrug resistance (P < 0.05) in a multidrug-resistant cancer cell model (MCF-7/ADR cell line), with cytotoxicity to normal cells (L929 cell line). Such inhibition could be ascribed to the increased DOX accumulation in the MCF-7/ADR nucleus. The co-delivery system exhibited good anticancer effects through prolonged circulation time, improved tumor-targeting efficiency, elevation of the tumor inhibition activity, and the suppression of MDRP expression. These data revealed the enormous potential of this co-delivery system for cancer therapy, especially in the later stages where multidrug resistance may develop.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficiency against multidrug resistance by co-delivery of doxorubicin and curcumin with a legumain-sensitive nanocarrier

Show Author's information Sen Lin1,2,3( )Peiling Xie1Mengmeng Luo1Qing Li2,3Ling Li1Jinzhao Zhang1Qinxiang Zheng1Hao Chen1,3Kaihui Nan1,3( )
School of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhou325027China
Wenzhou Institute of Biomaterials and EngineeringChinese Academy of ScienceWenzhou325000China
School of Biomedical and EngineeringWenzhou Medical UniversityWenzhou325027China

Abstract

Multidrug resistance proteins (MDRPs), which are implicated in the mediation of multidrug resistance in tumors, represent the main obstacle to successful chemotherapy. As curcumin (Cur) exerts inhibitory effects on both the expression and function of MDRPs, a nanocarrier for the co-delivery of Cur and doxorubicin (DOX) was prepared to overcome MDR tumors through their synergistic effects. Owing to the overexpression of legumain in tumors, the release profile of DOX from this nanocarrier was designed to be legumain modulated, which was achieved by bridging DOX to a basic material (chitosan) with a legumain-sensitive peptide. Compared with nanoparticles that only contain DOX, the coadministration of DOX and Cur significantly inhibited multidrug resistance (P < 0.05) in a multidrug-resistant cancer cell model (MCF-7/ADR cell line), with cytotoxicity to normal cells (L929 cell line). Such inhibition could be ascribed to the increased DOX accumulation in the MCF-7/ADR nucleus. The co-delivery system exhibited good anticancer effects through prolonged circulation time, improved tumor-targeting efficiency, elevation of the tumor inhibition activity, and the suppression of MDRP expression. These data revealed the enormous potential of this co-delivery system for cancer therapy, especially in the later stages where multidrug resistance may develop.

Keywords: curcumin, multidrug resistance, legumain, doxorubicin, co-delivery nanoparticle

References(62)

1

Kutanzi, K. R.; Yurchenko, O. V.; Beland, F. A.; Checkhun, V. F.; Pogribny, I. P. MicroRNA-mediated drug resistance in breast cancer. Clin. Epigenetics 2011, 2, 171-185.

2

Santos, S. A.; Paulo, A. Small molecule inhibitors of multidrug resistance gene (MDR1) expression: Preclinical evaluation and mechanisms of action. Curr. Cancer Drug Tar. 2013, 13, 814-828.

3

Singh, P.; Paul, K.; Holzer, W. Multi drug resistance: An obstacle to the successful chemotherapy of cancer—its mechanism and remedies via MDR modulators. Natl. Acad. Sci. Lett. 2005, 28, 365-372.

4

Toppmeyer, D.; Seidman, A. D.; Pollak, M.; Russell, C.; Tkaczuk, K.; Verma, S.; Overmoyer, B.; Garg, V.; Ette, E.; Harding, M. W. et al. Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin. Cancer Res. 2002, 8, 670-678.

5

Burkhart, C. A.; Watt, F.; Murray, J.; Pajic, M.; Prokvolit, A.; Xue, C. Y.; Flemming, C.; Smith, J.; Purmal, A.; Isachenko, N. et al. Small-molecule multidrug resistance-associated protein 1 inhibitor reversan increases the therapeutic index of chemotherapy in mouse models of neuroblastoma. Cancer Res. 2009, 69, 6573-6580.

6

Das, M.; Sahoo, S. K. Folate decorated dual drug loaded nanoparticle: Role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance. PLoS One 2012, 7, e32920.

7

Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Delivery Rev. 2012, 64, 49-60.

8

Haugen, M. H.; Boye, K.; Nesland, J. M.; Pettersen, S. J.; Egeland, E. V.; Tamhane, T.; Brix, K.; Maelandsmo, G. M.; Flatmark, K. High expression of the cysteine proteinase legumain in colorectal cancer—implications for therapeutic targeting. Eur. J. Cancer 2015, 51, 9-17.

9

Liu, Y.; Goswami, R. K.; Liu, C.; Sinha, S. C. Chemically programmed bispecific antibody targeting legumain protease and αvβ3 integrin mediates strong antitumor effects. Mol. Pharmaceutics 2015, 12, 2544-2550.

10

Edgington, L. E.; Verdoes, M.; Ortega, A.; Withana, N. P.; Lee, J.; Syed, S. Bachmann, M. H.; Blum, G.; Bogyo, M. Functional imaging of legumain in cancer using a new quenched activity-based probe. J. Am. Chem. Soc. 2013, 135, 174-182.

11

Wang, L. N.; Chen, S.; Zhang, M. N.; Li, N.; Chen, Y. N.; Su, W. J.; Liu, Y. H.; Lu, D.; Li, S. L.; Yang, Y. X. et al. Legumain: A biomarker for diagnosis and prognosis of human ovarian cancer. J. Cell Biochem. 2012, 113, 2679-2686.

12

Dall, E.; Brandstetter, H. Mechanistic and structural studies on legumain explain its zymogenicity, distinct activation pathways, and regulation. Proc. Nat. Acad. Sci. USA 2013, 110, 10940-10945.

13

Dall, E.; Fegg, J. C.; Briza, P.; Brandstetter, H. Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain. Angew. Chem., Int. Ed. 2015, 54, 2917-2921.

14

Lin, S.; Deng, F. F.; Huang, P.; Li, L. L.; Wang, L.; Li, Q.; Chen, L.; Chen, H.; Nan, K. H. A novel legumain protease- activated micelle cargo enhances anticancer activity and cellular internalization of doxorubicin. J. Mater. Chem. B 2015, 3, 6001-6012.

15

Liu, Z.; Xiong, M.; Gong, J. B.; Zhang, Y.; Bai, N.; Luo, Y. P.; Li, L. Y.; Wei, Y. Q.; Liu, Y. H.; Tan, X. Y. et al. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat. Commun. 2014, 5, 4280.

16

Huang, Y. H.; Cole, S. P. C.; Cai, T. G.; Cai, Y. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol. Lett. 2016, 12, 11-15.

17

Shen, J. N.; He, Q. J.; Gao, Y.; Shi, J. L.; Li, Y. P. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: Performance and mechanism. Nanoscale 2011, 3, 4314-4322.

18

Tang, J.; Zhang, L.; Gao, H.; Liu, Y.; Zhang, Q.; Ran, R.; Zhang, Z.; He, Q. Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Deliv. 2016, 23, 1130-1143.

19

Li, J.; Wang, Y.; Zhu, Y.; Oupický, D. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J. Control. Release 2013, 172, 589-600.

20

Li, J. M.; Zhang, W.; Su, H.; Wang, Y. Y.; Tan, C. P.; Ji, L. N.; Mao, Z. W. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-beta-cyclodextrin nanocarrier. Int. J. Nanomed. 2015, 10, 3147-3162.

21

Iyer, A. K.; Singh, A.; Ganta, S.; Amiji, M. M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1784-1802.

22

Xu, W. G.; Ding, J. X.; Xiao, C. S.; Li, L. Y.; Zhuang, X. L.; Chen, X. S. Versatile preparation of intracellular-acidity- sensitive oxime-linked polysaccharide-doxorubicin conjugate for malignancy therapeutic. Biomaterials 2015, 54, 72-86.

23

Yang, F.; Teves, S. S.; Kemp, C. J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta-Rev. Cancer 2014, 1845, 84-89.

24

O'Brien, M. E. R.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D. G.; Tomczak, P.; Ackland, S. P. et al. Reduced cardiotoxicity and comparable efficacy in a phase Ⅲ trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 2004, 15, 440-449.

25

Han, M.; Lv, Q.; Tang, X. J.; Hu, Y. L.; Xu, D. H.; Li, F. Z.; Liang, W. Q.; Gao, J. Q. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex. J. Control. Release 2012, 163, 136-144.

26

Anuchapreeda, S.; Leechanachai, P.; Smith, M. M.; Ambudkar, S. V.; Limtrakul, P. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells. Biochem. Pharmacol. 2002, 64, 573-582.

27

Lu, W. D.; Qin, Y.; Yang, C.; Li, L. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo. Clinics 2013, 68, 694-701.

28

Ganta, S.; Amiji, M. Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol. Pharmaceutics 2009, 6, 928-939.

29

Fernandez, A. M.; van Derpoorten, K.; Dasnois, L.; Lebtahi, K.; Dubois, V.; Lobl, T. J.; Gangwar, S.; Oliyai, C.; Lewis, E. R.; Shochat, D. et al. N-succinyl-(β-alanyl-L- leucyl-L-alanyl-L-leucyl)doxorubicin:  An extracellularly tumor- activated prodrug devoid of intravenous acute toxicity. J. Med. Chem. 2001, 44, 3750-3753.

30

Malhotra, M.; Tomaro-Duchesneau, C.; Prakash, S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 2013, 34, 1270-1280.

31

Song, X. J.; Wu, H.; Li, S.; Wang, Y. F.; Ma, X. J.; Tan, M. Q. Ultrasmall chitosan-genipin nanocarriers fabricated from reverse microemulsion process for tumor photothermal therapy in mice. Biomacromolecules 2015, 16, 2080-2090.

32

Wang, H.; Ke, F. Y.; Mararenko, A.; Wei, Z. Y.; Banerjee, P.; Zhou, S. Q. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging. Nanoscale 2014, 6, 7443-7452.

33

Lin, S.; Li, T.; Xie, P. L.; Li, Q.; Wang, B. L.; Wang, L.; Li, L. L.; Wang, Y. Q.; Chen, H.; Nan, K. H. Targeted delivery of doxorubicin to tumour tissues by a novel legumain sensitive polygonal nanogel. Nanoscale 2016, 8, 18400-18411.

34

Lou, S. F.; Gao, S.; Wang, W. W.; Zhang, M. M.; Zhang, J.; Wang, C.; Li, C.; Kong, D. L.; Zhao, Q. Galactose- functionalized multi-responsive nanogels for hepatoma- targeted drug delivery. Nanoscale 2015, 7, 3137-3146.

35

Choi, K. Y.; Yoon, H. Y.; Kim, J. H.; Bae, S. M.; Park, R. W.; Kang, Y. M.; Kim, I. S.; Kwon, I. C.; Choi, K.; Jeong, S. Y. et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 2011, 5, 8591-8599.

36

Oommen, O. P.; Garousi, J.; Sloff, M.; Varghese, O. P. Tailored doxorubicin-hyaluronan conjugate as a potent anticancer glyco-drug: An alternative to prodrug approach. Macromol. Biosci. 2014, 14, 327-333.

37

Liu, L.; Sun, L.; Wu, Q. J.; Guo, W. H.; Li, L. C.; Chen, Y. S.; Li, Y. C.; Gong, C. Y.; Qian, Z. Y.; Wei, Y. Q. Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int. J. Pharm. 2013, 443, 175-182.

38

Soiberman, U.; Kambhampati, S. P.; Wu, T.; Mishra, M. K.; Oh, Y.; Sharma, R.; Wang, J. X.; Al Towerki, A. E.; Yiu, S.; Stark, W. J. et al. Subconjunctival injectable dendrimer- dexamethasone gel for the treatment of corneal inflammation. Biomaterials 2017, 125, 38-53.

39

Camacho, K. M.; Kumar, S.; Menegatti, S.; Vogus, D. R.; Anselmo, A. C.; Mitragotri, S. Synergistic antitumor activity of camptothecin-doxorubicin combinations and their conjugates with hyaluronic acid. J. Control. Release 2015, 210, 198-207.

40

Kabachinski, G.; Schwartz, T. U. The nuclear pore complex-structure and function at a glance. J. Cell Sci. 2015, 128, 423-429.

41

Vollmar, F.; Hacker, C.; Zahedi, R. P.; Sickmann, A.; Ewald, A.; Scheer, U.; Dabauvalle, M. C. Assembly of nuclear pore complexes mediated by major vault protein. J. Cell Sci. 2009, 122, 780-786.

42

Thiyagarajan, S.; Thirumalai, K.; Nirmala, S.; Biswas, J.; Krishnakumar, S. Effect of curcumin on lung resistance- related protein (LRP) in retinoblastoma cells. Curr. Eye Res. 2009, 34, 845-851.

43

Mosafer, J.; Teymouri, M.; Abnous, K.; Tafaghodi, M.; Ramezani, M. Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. Mater. Sci Eng. C 2017, 72, 123-133.

44

Sahay, G.; Kim, J. O.; Kabanov, A. V.; Bronich, T. K. The exploitation of differential endocytic pathways in normal and tumor cells in the selective targeting of nanoparticulate chemotherapeutic agents. Biomaterials 2010, 31, 923-933.

45

Rejinold, N. S.; Chennazhi, K. P.; Tamura, H.; Nair, S. V.; Rangasamy, J. Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing. ACS Appl. Mater. Interfaces 2011, 3, 3654-3665.

46

Chen, Y. H.; Wang, C. C.; Xiao, X.; Wei, L.; Xu, G. X. Multidrug resistance-associated protein 1 decreases the concentrations of antiepileptic drugs in cortical extracellular fluid in amygdale kindling rats. Acta Pharmacol. Sin. 2013, 34, 473-479.

47

Perkins, S.; Verschoyle, R. D.; Hill, K.; Parveen, I.; Threadgill, M. D.; Sharma, R. A.; Williams, M. L.; Steward, W. P.; Gescher, A. J. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemol. Biomarkers Prev. 2002, 11, 535-540.

48

Coccolini, F.; Acocella, F.; Morosi, L.; Brizzola, S.; Ghiringhelli, M.; Ceresoli, M.; Davoli, E.; Ansaloni, L.; D'Incalci, M.; Zucchetti, M. High penetration of paclitaxel in abdominal wall of rabbits after hyperthermic intraperitoneal administration of nab-paclitaxel compared to standard paclitaxel formulation. Pharm. Res. 2017, 34, 1180-1186.

49

Gong, C. Y.; Yang, B.; Qian, Z. Y.; Zhao, X.; Wu, Q. J.; Qi, X. R.; Wang, Y. J.; Guo, G.; Kan, B.; Luo, F. et al. Improving intraperitoneal chemotherapeutic effect and preventing postsurgical adhesions simultaneously with biodegradable micelles. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 963-973.

50

Lopes, M.; Shrestha, N.; Correia, A.; Shahbazi, M. A.; Sarmento, B.; Hirvonen, J.; Veiga, F.; Seiça, R.; Ribeiro, A.; Santos, H. A. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J. Control. Release 2016, 232, 29-41.

51

Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818-1822.

52

De Cock, L. J.; De Koker, S.; De Geest, B. G.; Grooten, J.; Vervaet, C.; Remon, J. P.; Sukhorukov, G. B.; Antipina, M. N. Polymeric multilayer capsules in drug delivery. Angew. Chem., Int. Ed. 2010, 49, 6954-6973.

53

de la Rica, R.; Aili, D.; Stevens, M. M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 2012, 64, 967-978.

54

Rao, W.; Wang, H.; Han, J. F.; Zhao, S. T.; Dumbleton, J.; Agarwal, P.; Zhang, W. J.; Zhao, G.; Yu, J. H.; Zynger, D. L. et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 2015, 9, 5725-5740.

55

Muzzarelli, R. A. A.; Mattioli-Belmonte, M.; Miliani, M.; Muzzarelli, C.; Gabbanelli, F.; Biagini, G. In vivo and in vitro biodegradation of oxychitin-chitosan and oxypullulan-chitosan complexes. Carbohyd. Polym. 2002, 48, 15-21.

56

Ding, J. X.; Shi, F. H.; Xiao, C. S.; Lin, L.; Li, C.; He, C. L.; Zhuang, X. L.; Chen, X. S. One-step preparation of reduction- responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polym. Chem. 2011, 2, 2857-2864.

57

Yoon, H. H.; Shi, Q.; Sukov, W. R.; Wiktor, A. E.; Khan, M.; Sattler, C. A.; Grothey, A.; Wu, T. T.; Diasio, R. B.; Jenkins, R. B. et al. Association of HER2/ErbB2 expression and gene amplification with pathologic features and prognosis in esophageal adenocarcinomas. Clin. Cancer Res. 2012, 18, 546-554.

58

Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48-58.

59

Baker, M. Deceptive curcumin offers cautionary tale for chemists. Nature 2017, 541, 144-145.

60

Nelson, K. M.; Dahlin, J. L.; Bisson, J.; Graham, J.; Pauli, G. F.; Walters, M. A. The Essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620-1637.

61

Heger, M. Drug screening: Don't discount all curcumin trial data. Nature 2017, 543, 40.

62

Jaroonwitchawan, T.; Chaicharoenaudomrung, N.; Namkaew, J.; Noisa, P. Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci. Lett. 2017, 636, 40-47.

File
12274_2017_1928_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 August 2017
Revised: 16 November 2017
Accepted: 19 November 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (No. 31600807), the Natural Science Foundation of Zhejiang Province (No. LQ15H120003), the National Key Research and Development Plan Project (No. 2016YFC1101201), and the Science and Technology Planning Project of Wenzhou City (No. Y20160085) for their financial support.

Return