Journal Home > Volume 11 , Issue 7

Intracerebral hemorrhage (ICH), caused by the sudden rupture of an artery within the brain, is a devastating subtype of stroke, which currently has no effective treatment. Intense inflammatory reactions that occur in the peri-hematomal area after ICH are more deleterious than the hematoma itself, resulting in subsequent brain edema and neurologic deterioration. Thus, we developed lipid-coated magnetic mesoporous silica nanoparticles doped with ceria nanoparticles (CeNPs), abbreviated as LMCs, which have both potent anti-inflammatory therapeutic effects via scavenging reactive oxygen species and help in increasing the efficacy of magnetic resonance imaging enhancement in the peri-hematomal area. LMCs consist of mesoporous silica nanoparticle-supported lipid bilayers, which are loaded with large amounts of CeNPs for scavenging of reactive oxygen species, and iron oxide nanoparticles for magnetic resonance imaging contrast. LMCs loaded with CeNPs exhibited strong anti-oxidative and anti-inflammatory activities in vitro. In the rodent ICH model, intracerebrally injected LMCs reached the peri-hematomal area and were engulfed by macrophages, which were clearly visualized by magnetic resonance imaging of the brain. Moreover, LMCs reduced inflammatory macrophage infiltration, and thus significantly reduced brain edema. Finally, LMC treatment markedly improved neurologic outcomes of the animals with ICH. Thus, LMC is the first nanobiomaterial that successfully showed theragnostic effects in ICH.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage

Show Author's information Bong Geun Cha1,§Han-Gil Jeong2,3,§Dong-Wan Kang2,3Myong-Joo Nam1Chi Kyung Kim2,4Do Yeon Kim2,3In-Young Choi2,3Seul Ki Ki2,3Song I. Kim2,3Ju hee Han2,3Jaeyun Kim1,5,6( )Seung-Hoon Lee2,3( )
School of Chemical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
Department of Laboratory of Innovative NanobiotechnologyBiomedical Research InstituteSeoul National University Hospital 101Daehak-roJongno-guSeoul03080Republic of Korea
Department of NeurologySeoul National University Hospital 101Daehak-roJongno-guSeoul03080Republic of Korea
Department of NeurologyKorea University Guro Hospital and Korea University College of MedicineSeoul08308Republic of Korea
Department of Health Sciences and TechnologySamsung Advanced Institute for Health Science & Technology (SAIHST)Sungkyunkwan UniversitySuwon16419Republic of Korea
Biomedical Institute for Convergence at SKKU (BICS)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea

§Bong Geun Cha and Han-Gil Jeong contributed equally to this work.

Abstract

Intracerebral hemorrhage (ICH), caused by the sudden rupture of an artery within the brain, is a devastating subtype of stroke, which currently has no effective treatment. Intense inflammatory reactions that occur in the peri-hematomal area after ICH are more deleterious than the hematoma itself, resulting in subsequent brain edema and neurologic deterioration. Thus, we developed lipid-coated magnetic mesoporous silica nanoparticles doped with ceria nanoparticles (CeNPs), abbreviated as LMCs, which have both potent anti-inflammatory therapeutic effects via scavenging reactive oxygen species and help in increasing the efficacy of magnetic resonance imaging enhancement in the peri-hematomal area. LMCs consist of mesoporous silica nanoparticle-supported lipid bilayers, which are loaded with large amounts of CeNPs for scavenging of reactive oxygen species, and iron oxide nanoparticles for magnetic resonance imaging contrast. LMCs loaded with CeNPs exhibited strong anti-oxidative and anti-inflammatory activities in vitro. In the rodent ICH model, intracerebrally injected LMCs reached the peri-hematomal area and were engulfed by macrophages, which were clearly visualized by magnetic resonance imaging of the brain. Moreover, LMCs reduced inflammatory macrophage infiltration, and thus significantly reduced brain edema. Finally, LMC treatment markedly improved neurologic outcomes of the animals with ICH. Thus, LMC is the first nanobiomaterial that successfully showed theragnostic effects in ICH.

Keywords: imaging, therapeutics, reactive oxygen species, intracerebral hemorrhage, magnetic mesoporous silica nanoparticle, ceria nanoparticles

References(37)

1

Qureshi, A. I. ; Tuhrim, S. ; Broderick, J. P. ; Batjer, H. H. ; Hondo, H. ; Hanley, D. F. Spontaneous intracerebral hemorrhage. N. Engl. J. Med. 2001, 344, 1450–1460.

2

Labovitz, D. L. ; Halim, A. ; Boden-Albala, B. ; Hauser, W. A. ; Sacco, R. L. The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and Hispanics. Neurology 2005, 65, 518–522.

3

Balami, J. S. ; Buchan, A. M. Complications of intracerebral haemorrhage. Lancet Neurol. 2012, 11, 101–118.

4

Mendelow, A. D. ; Gregson, B. A. ; Fernandes, H. M. ; Murray, G. D. ; Teasdale, G. M. ; Hope, D. T. ; Karimi, A. ; Shaw, M. D. M. ; Barer, D. H. STICH investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005, 365, 387–397.

5

Mayer, S. A. ; Brun, N. C. ; Begtrup, K. ; Broderick, J. ; Davis, S. ; Diringer, M. N. ; Skolnick, B. E. ; Steiner, T. Efficacy and safety of recombinant activated factor Ⅶ for acute intracerebral hemorrhage. N. Engl. J. Med. 2008, 358, 2127–2137.

6

Wang, J. ; Doré, S. Inflammation after intracerebral hemorrhage. J. Cerebr. Blood Flow Met. 2007, 27, 894–908.

7

Hua, Y. ; Keep, R. F. ; Hoff, J. T. ; Xi, G. H. Brain injury after intracerebral hemorrhage: The role of thrombin and iron. Stroke 2007, 38, 759–762.

8

Kress, G. J. ; Dineley, K. E. ; Reynolds, I. J. The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J. Neurosci. 2002, 22, 5848–5855.

9

Hu, X. ; Tao, C. Y. ; Gan, Q. ; Zheng, J. ; Li, H. ; You, C. Oxidative stress in intracerebral hemorrhage: Sources, mechanisms, and therapeutic targets. Oxid. Med. Cell. Longev. 2016, 2016, 3215391.

10

Nakamura, T. ; Keep, R. F. ; Hua, Y. ; Hoff, J. T. ; Xi, G. H. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005, 1039, 30–36.

11

Katsu, M. ; Niizuma, K. ; Yoshioka, H. ; Okami, N. ; Sakata, H. ; Chan, P. H. Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood–brain barrier dysfunction in vivo. J. Cerebr. Blood Flow Met. 2010, 30, 1939–1950.

12

Wu, J. M. ; Hua, Y. ; Keep, R. F. ; Schallert, T. ; Hoff, J. T. ; Xi, G. H. Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res. 2002, 953, 45–52.

13

Liu, K. J. ; Rosenberg, G. A. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Rad. Biol. Med. 2005, 39, 71–80.

14

Lyden, P. D. ; Shuaib, A. ; Lees, K. R. ; Davalos, A. ; Davis, S. M. ; Diener, H. C. ; Grotta, J. C. ; Ashwood, T. J. ; Hardemark, H. G. ; Svensson, H. H. et al. Safety and tolerability of NXY-059 for acute intracerebral hemorrhage: The CHANT Trial. Stroke 2007, 38, 2262–2269.

15

Celardo, I. ; Pedersen, J. Z. ; Traversa, E. ; Ghibelli, L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011, 3, 1411–1420.

16

Pirmohamed, T. ; Dowding, J. M. ; Singh, S. ; Wasserman, B. ; Heckert, E. ; Karakoti, A. S. ; King, J. E. ; Seal, S. ; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738.

17

Singh, S. ; Dosani, T. ; Karakoti, A. S. ; Kumar, A. ; Seal, S. ; Self, W. T. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 2011, 32, 6745–6753.

18

Xu, C. ; Qu, X. G. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90.

19

Deshpande, S. ; Patil, S. ; Kuchibhatla, S. V. ; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113.

20

Korsvik, C. ; Patil, S. ; Seal, S. ; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058.

21

Heckert, E. G. ; Karakoti, A. S. ; Seal, S. ; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.

22

Celardo, I. ; De Nicola, M. ; Mandoli, C. ; Pedersen, J. Z. ; Traversa, E. ; Ghibelli, L. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 2011, 5, 4537–4549.

23

Hirst, S. M. ; Karakoti, A. S. ; Tyler, R. D. ; Sriranganathan, N. ; Seal, S. ; Reilly, C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848–2856.

24

Cimini, A. ; D' Angelo, B. ; Das, S. ; Gentile, R. ; Benedetti, E. ; Singh, V. ; Monaco, A. M. ; Santucci, S. ; Seal, S. Antibodyconjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater. 2012, 8, 2056–2067.

25

Lu, J. ; Liong, M. ; Li, Z. X. ; Zink, J. I. ; Tamanoi, F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010, 6, 1794–1805.

26

Trewyn, B. G. ; Slowing, I. I. ; Giri, S. ; Chen, H. T. ; Lin, V. S. Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 2007, 40, 846–853.

27

Tang, F. Q. ; Li, L. L. ; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

28

Ashley, C. E. ; Carnes, E. C. ; Phillips, G. K. ; Padilla, D. ; Durfee, P. N. ; Brown, P. A. ; Hanna, T. N. ; Liu, J. W. ; Phillips, B. ; Carter, M. B. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 2011, 10, 389–397.

29

Kim, J. ; Kim, H. S. ; Lee, N. ; Kim, T. ; Kim, H. ; Yu, T. ; Song, I. C. ; Moon, W. K. ; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem., Int. Ed. 2008, 47, 8438–8441.

30

Yu, T. ; Lim, B. ; Xia, Y. N. Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew. Chem., Int. Ed. 2010, 49, 4484–4487.

31

Fortes, G. B. ; Alves, L. S. ; de Oliveira, R. ; Dutra, F. F. ; Rodrigues, D. ; Fernandez, P. L. ; Souto-Padron, T. ; De Rosa, M. J. ; Kelliher, M. ; Golenbock, D. et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 2012, 119, 2368–2375.

32

MacLellan, C. L. ; Silasi, G. ; Poon, C. C. ; Edmundson, C. L. ; Buist, R. ; Peeling, J. ; Colbourne, F. Intracerebral hemorrhage models in rat: Comparing collagenase to blood infusion. J. Cerebr. Blood Flow Met. 2008, 28, 516–525.

33

Kang, D. W. ; Kim, C. K. ; Jeong, H. G. ; Soh, M. ; Kim, T. ; Choi, I. Y. ; Ki, S. K. ; Kim, D. Y. ; Yang, W. ; Hyeon, T. et al. Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage. Nano Res. 2017, 10, 2743–2760.

34

Keep, R. F. ; Hua, Y. ; Xi, G. H. Brain water content: A misunderstood measurement? Transl. Stroke Res. 2012, 3, 263–265.

35

Jung, K. H. ; Chu, K. ; Jeong, S. W. ; Han, S. Y. ; Lee, S. T. ; Kim, J. Y. ; Kim, M. ; Roh, J. K. HMG-CoA reductase inhibitor, atorvastatin, promotes sensorimotor recovery, suppressing acute inflammatory reaction after experimental intracerebral hemorrhage. Stroke 2004, 35, 1744–1749.

36

Hua, Y. ; Schallert, T. ; Keep, R. F. ; Wu, J. M. ; Hoff, J. T. ; Xi, G. H. Behavioral tests after intracerebral hemorrhage in the rat. Stroke 2002, 33, 2478–2484.

37

Xi, G. H. ; Hua, Y. ; Bhasin, R. R. ; Ennis, S. R. ; Keep, R. F. ; Hoff, J. T. Mechanisms of edema formation after intracerebral hemorrhage: Effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke 2001, 32, 2932–2938.

File
12274_2017_1924_MOESM1_ESM.pdf (638 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2017
Revised: 12 November 2017
Accepted: 14 November 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

This research was supported by a grant of the Korea Health Technology R & D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (No. HI17C0076), and also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. NRF-2015R1A2A2A01007770).

Return