Journal Home > Volume 11 , Issue 5

Carbon materials are widely used for supercapacitor applications thanks to their high surface area, good rate capability, and excellent cycling stability. However, the development of high energy density carbon supercapacitors still remains a challenge. In this work, hollow Co3O4 nanoboxes have been embedded into three-dimensional macroporous laser-scribed graphene (LSG) to produce composite electrodes with improved electrochemical performance. Here, Co3O4 provides high capacity through fast and reversible redox reactions, while LSG serves as a conductive network to maintain high power. The open nanobox morphology is a unique solution for extracting the maximum capacity from Co3O4, resulting in electrodes whose surfaces, both internal and external, are accessible to the electrolyte. The electrochemical performance of the composite material is promising with a volumetric capacity of 60.0 C/cm3 and a specific capacity of 542.3 C/g, corresponding to 682.0 C/g of the constituent Co3O4. With a low equivalent series resistance of 0.9 Ω, the Co3O4/LSG electrode is able to maintain 113.1% of its original capacity after 10, 000 cycles. This work provides new insights into the design of high-performance carbon/metal oxide nanocomposites for next-generation energy storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Embedding hollow Co3O4 nanoboxes into a three-dimensional macroporous graphene framework for high-performance energy storage devices

Show Author's information Mengping Li1Maher F. El-Kady1,2Jee Y. Hwang1Matthew D. Kowal1Kristofer Marsh1Haosen Wang1Zhijuan Zhao1Richard B. Kaner1,3( )
Department of Chemistry and Biochemistry and California NanoSystems InstituteUniversity of CaliforniaLos AngelesLos AngelesCA90095USA
Department of ChemistryFaculty of ScienceCairo UniversityGiza12613Egypt
Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesLos AngelesCA90095USA

Abstract

Carbon materials are widely used for supercapacitor applications thanks to their high surface area, good rate capability, and excellent cycling stability. However, the development of high energy density carbon supercapacitors still remains a challenge. In this work, hollow Co3O4 nanoboxes have been embedded into three-dimensional macroporous laser-scribed graphene (LSG) to produce composite electrodes with improved electrochemical performance. Here, Co3O4 provides high capacity through fast and reversible redox reactions, while LSG serves as a conductive network to maintain high power. The open nanobox morphology is a unique solution for extracting the maximum capacity from Co3O4, resulting in electrodes whose surfaces, both internal and external, are accessible to the electrolyte. The electrochemical performance of the composite material is promising with a volumetric capacity of 60.0 C/cm3 and a specific capacity of 542.3 C/g, corresponding to 682.0 C/g of the constituent Co3O4. With a low equivalent series resistance of 0.9 Ω, the Co3O4/LSG electrode is able to maintain 113.1% of its original capacity after 10, 000 cycles. This work provides new insights into the design of high-performance carbon/metal oxide nanocomposites for next-generation energy storage devices.

Keywords: composite, graphene, cobalt oxide, supercapacitor, laser, hybrid capacitor

References(41)

1

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

2

Burke, A. R & D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 2007, 53, 1083-1091.

3

Miller, J. R.; Burke, A. F. Electrochemical capacitors: Challenges and opportunities for real-world applications. J. Electrochem. Soc. Interface 2008, 17, 53-57.

4

Simon, P.; Gogotsi, Y.; Dunn B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210-1211.

5

Winter, M.; Brodd R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245-4270.

6

Brousse, T.; Bélanger, D.; Long, J. W. To be or not to be pseudocapacitive? J. Electrochem. Soc. 2015, 162, 5185-A5189.

7

Zhang, L. L.; Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520-2531.

8

Kou, T. Y.; Yao, B.; Liu, T. Y.; Li, Y. Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J. Mater. Chem. A 2017, 5, 17151-17173.

9

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326-1330.

10

Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719-6726.

11

Wang, L. J.; El-Kady, M. F.; Dubin, S.; Hwang, J. Y.; Shao, Y. L.; Marsh, K.; McVerry, B.; Kowal, M. D.; Mousavi, M. F.; Kaner, R. B. Flash converted graphene for ultra-high power supercapacitors. Adv. Energy Mater. 2015, 5, 1500786.

12

El-Kady, M. F.; Ihns, M.; Li, M. P.; Hwang, J. Y.; Mousavi, M. F.; Chaney, L.; Lech, A. T.; Kaner, R. B. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proc. Natl. Acad. Sci. USA 2015, 112, 4233-4238.

13

Zhi, M. J.; Xiang, C. C.; Li, J. T.; Li, M.; Wu, N. Q. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 2013, 5, 72-88.

14

Wang, L.; Ji, H. M.; Wang, S. S.; Kong, L. J.; Jiang, X. F.; Yang, G. Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 2013, 5, 3793-3799.

15

Chen, Y. L.; Wang Y.; Sun, P.; Yang, P. H.; Du, L. H.; Mai, W. J. Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 2015, 3, 20614-20618.

16

Lian, C.; Wang, Z.; Lin, R.; Wang, D. S.; Chen, C.; Li, Y. D. An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties. Nano Res. 2017, 10, 3303-3313.

17

Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y. H.; Zhang, H.; Hng, H. H. et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643-652.

18

Wang, Y. R.; Wei, H. G.; Wang, J. M.; Liu, J. R.; Guo, J.; Zhang, X.; Weeks, B. L.; Shen, T. D.; Wei, S. Y.; Guo, Z. H. Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage. J. Mater. Chem. A 2015, 3, 20778-20790.

19

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265-270.

20

Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505-4509.

21

Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo, H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K. et al. Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 2010, 20, 617-623.

22

Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258-262.

23

Cheng, G. H.; Kou, T. Y.; Zhang, J.; Si, C. H.; Gao, H.; Zhang, Z. H. O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy 2017, 38, 155-166.

24

Du, W.; Liu, R. M.; Jiang, Y. W.; Lu, Q. Y.; Fan, Y. Z.; Gao, F. Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J. Power Sources 2013, 227, 101-105.

25

Xuan, L. Y.; Chen, L. Y.; Yang, Q. Q.; Chen, W. F.; Hou, X. H.; Jiang, Y. Q.; Zhang, Q.; Yuan, Y. Engineering 2D multi-layer graphene-like Co3O4 thin sheets with vertically aligned nanosheets as basic building units for advanced pseudocapacitor materials. J. Mater. Chem. A 2015, 3, 17525-17533.

26

Xia, X. H.; Tu, J. P.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem. Commun. 2011, 47, 5786-5788.

27

He, T.; Chen, D.; Jiao, X.; Wang, Y. Co3O4 nanoboxes: Surfactant-templated fabrication and microstructure characterization. Adv. Mater. 2006, 18, 1078-1082.

28

Wang, X.; Fu, H. B.; Peng, A. D.; Zhai, T. Y.; Ma, Y.; Yuan, F. L.; Yao, J. N. One-pot solution synthesis of cubic cobalt nanoskeletons. Adv. Mater. 2009, 21, 1636-1640.

29

Hwang, J. Y.; El-Kady, M. F.; Wang, Y.; Wang, L. S.; Shao, Y. L.; Marsh, K.; Ko, J. M.; Kaner, R. B. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 2015, 18, 57-70.

30

Foo, C. Y.; Sumboja, A.; Tan, D. J. H.; Wang, J. X.; Lee, P. S. Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv. Energy Mater. 2014, 4, 1400236.

31

Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H. B.; Lu, Y. F. Hierarchical manganese oxide/ carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216-225.

32

Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711-714.

33

Xu, J. M.; Wu, J. S.; Luo, L. L.; Chen, X. Q.; Qin, H. B.; Dravid, V.; Mi, S. B.; Jia, C. L. Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries. J. Power Sources 2015, 274, 816-822.

34

Ni, Z. H.; Wang, Y. Y.; Yu T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273-291.

35

Mazloumi, M.; Shadmehr, S.; Rangom, Y.; Nazar, L. F.; Tang, X. W. Fabrication of three-dimensional carbon nanotube and metal oxide hybrid mesoporous architectures. ACS Nano 2013, 7, 4281-4288.

36

Silva, R.; Pereira, G. M.; Voiry, D.; Chhowalla, M.; Asefa, T. Co3O4 nanoparticles/cellulose nanowhiskers-derived amorphous carbon nanoneedles: Sustainable materials for supercapacitors and oxygen reduction electrocatalysis. RSC Adv. 2015, 5, 49385-49391.

37

Abouali, S.; Akbari Garakani, M.; Zhang, B.; Xu, Z. L.; Kamali Heidari, E.; Huang, J. Q.; Huang, J. Q.; Kim, J. K. Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 13503-13511.

38

Wang, X. W.; Li, M. X.; Chang, Z.; Yang, Y. Q.; Wu, Y. P.; Liu, X. Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 2280-2285.

39

Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206-3213.

40

Xia, X. H.; Tu, J. P.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 2011, 21, 9319-9325.

41

Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer: New York, 2013.

File
12274_2017_1914_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2017
Revised: 08 October 2017
Accepted: 07 November 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

The authors would like to acknowledge financial support from Nanotech Energy, Inc. (R. B. K.) and the China Scholarship Council (M. L.). Special thanks to Michael Yeung for help with calcination of the electrode materials.

Return