Journal Home > Volume 11 , Issue 5

Because of its high compatibility with conventional microfabrication processing technology, epitaxial graphene (EG) grown on SiC shows exceptional promise for graphene-based electronics. However, to date, a detailed understanding of the transformation from three-layer SiC to monolayer graphene is still lacking. Here, we demonstrate the direct atomic-scale observation of EG growth on a SiC (1100) surface at 1, 000 ℃ by in situ transmission electron microscopy in combination with ab initio molecular dynamics (AIMD) simulations. Our detailed analysis of the growth dynamics of monolayer graphene reveals that three SiC (1100) layers decompose successively to form one graphene layer. Sublimation of the first layer causes the formation of carbon clusters containing short chains and hexagonal rings, which can be considered as the nuclei for graphene growth. Decomposition of the second layer results in the appearance of new chains connecting to the as-formed clusters and the formation of a network with large pores. Finally, the carbon atoms released from the third layer lead to the disappearance of the chains and large pores in the network, resulting in a whole graphene layer. Our study presents a clear picture of the epitaxial growth of the monolayer graphene from SiC and provides valuable information forfuture developments in SiC-derived EG technology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ atomic-scale observation of monolayer graphene growth from SiC

Show Author's information Kaihao Yu1,§Wen Zhao2,4,§Xing Wu1,5,§Jianing Zhuang4Xiaohui Hu1,6Qiubo Zhang1Jun Sun1Tao Xu1Yang Chai9Feng Ding2,3,4( )Litao Sun1,7,8( )
SEU-FEI Nano-Pico CenterKey Laboratory of MEMS of Ministry of EducationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
Center for Multidimensional Carbon MaterialsInstitute for Basic Science, Ulsan689-798Republic of Korea
School of Materials Science and EngineeringUlsan National Institute of Science and TechnologyUlsan689-798Republic of Korea
Institute of Textiles and ClothingHong Kong Polytechnic UniversityHong Kong999077China
Shanghai Key Laboratory of Multidimensional Information ProcessingDepartment of Electrical EngineeringEast China Normal UniversityShanghai200241China
College of Materials Science and EngineeringNanjing Tech UniversityNanjing210009China
Center for Advanced Carbon MaterialsSoutheast University and Jiangnan Graphene Research InstituteChangzhou213100China
Center for Advanced Materials and ManufactureJoint Research Institute of Southeast University and Monash UniversitySuzhou215123China
Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong999077China

§ Kaihao Yu, Wen Zhao, and Xing Wu contributed equally to this work.

Abstract

Because of its high compatibility with conventional microfabrication processing technology, epitaxial graphene (EG) grown on SiC shows exceptional promise for graphene-based electronics. However, to date, a detailed understanding of the transformation from three-layer SiC to monolayer graphene is still lacking. Here, we demonstrate the direct atomic-scale observation of EG growth on a SiC (1100) surface at 1, 000 ℃ by in situ transmission electron microscopy in combination with ab initio molecular dynamics (AIMD) simulations. Our detailed analysis of the growth dynamics of monolayer graphene reveals that three SiC (1100) layers decompose successively to form one graphene layer. Sublimation of the first layer causes the formation of carbon clusters containing short chains and hexagonal rings, which can be considered as the nuclei for graphene growth. Decomposition of the second layer results in the appearance of new chains connecting to the as-formed clusters and the formation of a network with large pores. Finally, the carbon atoms released from the third layer lead to the disappearance of the chains and large pores in the network, resulting in a whole graphene layer. Our study presents a clear picture of the epitaxial growth of the monolayer graphene from SiC and provides valuable information forfuture developments in SiC-derived EG technology.

Keywords: graphene, epitaxial growth, transmission electron microscopy, in situ

References(62)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.

3

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271-279.

4

Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912-19916.

5

Lin, Y. -M.; Valdes-Garcia, A.; Han, S. -J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294-1297.

6

Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano 2008, 2, 2513-2518.

7

Tanaka, S.; Morita, K.; Hibino, H. Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys. Rev. B 2010, 81, 041406.

8

Norimatsu, W.; Kusunoki, M. Transitional structures of the interface between graphene and 6H-SiC (0001). Chem. Phys. Lett. 2009, 468, 52-56.

9

Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203-207.

10

Johansson, L. I.; Watcharinyanon, S.; Zakharov, A. A.; Iakimov, T.; Yakimova, R.; Virojanadara, C. Stacking of adjacent graphene layers grown on C-face SiC. Phys. Rev. B 2011, 84, 125405.

11

Varchon, F.; Mallet, P.; Magaud, L.; Veuillen, J. -Y. Rotational disorder in few-layer graphene films on 6H-SiC(0001): A scanning tunneling microscopy study. Phys. Rev. B 2008, 77, 165415.

12

Weng, X. J.; Robinson, J. A.; Trumbull, K.; Cavalero, R.; Fanton, M. A.; Snyder, D. Epitaxial graphene on SiC(0001): Stacking order and interfacial structure. Appl. Phys. Lett. 2012, 100, 031904.

13

Borysiuk, J.; Sołtys, J.; Piechota, J. Stacking sequence dependence of graphene layers on SiC (0001)-Experimental and theoretical investigation. J. Appl. Phys. 2011, 109, 093523.

14

de Heer, W. A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. USA 2011, 108, 16900-16905.

15

Tromp, R. M.; Hannon, J. B. Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 2009, 102, 106104.

16

Forbeaux, I.; Themlin, J. M.; Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 16396-16406.

17

Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W. A.; First, P. N.; Conrad, E. H.; Jeffrey, C. A.; Berger, C. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106.

18

Kumar, B.; Baraket, M.; Paillet, M.; Huntzinger, J. R.; Tiberj, A.; Jansen, A. G. M.; Vila, L.; Cubuku, M.; Vergnaud, C.; Jamet, M. et al. Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure. Phys. E: Low-dimens. Syst. Nanostr. 2016, 75, 7-14.

19

Robinson, J. A.; Wetherington, M.; Tedesco, J. L.; Campbell, P. M.; Weng, X.; Stitt, J.; Fanton, M. A.; Frantz, E.; Snyder, D.; VanMil, B. L. et al. Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale. Nano Lett. 2009, 9, 2873-2876.

20

Lin, Y. -M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. -Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.

21

Luxmi; Srivastava, N.; He, G. W.; Feenstra, R. M.; Fisher, P. J. Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Phys. Rev. B 2010, 82, 235406.

22

Hass, J.; Varchon, F.; Millán-Otoya, J. E.; Sprinkle, M.; Sharma, N.; de Heer, W. A.; Berger, C.; First, P. N.; Magaud, L.; Conrad, E. H. Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504.

23

Hicks, J.; Shepperd, K.; Wang, F.; Conrad, E. H. The structure of graphene grown on the SiC (0001) surface. J. Phys. D: Appl. Phys. 2012, 45, 154002.

24

Kageshima, H.; Hibino, H.; Tanabe, S. The physics of epitaxial graphene on SiC(0001). J. Phys. : Condens. Matter 2012, 24, 314215.

25

Bolen, M. L.; Harrison, S. E.; Biedermann, L. B.; Capano, M. A. Graphene formation mechanisms on 4H-SiC(0001). Phys. Rev. B 2009, 80, 115433.

26

Norimatsu, W.; Kusunoki, M. Formation process of graphene on SiC (0001). Phys. E: Low-dimens. Syst. Nanostr. 2010, 42, 691-694.

27

Robinson, J.; Weng, X. J.; Trumbull, K.; Cavalero, R.; Wetherington, M.; Frantz, E.; LaBella, M.; Hughes, Z.; Fanton, M.; Snyder, D. Nucleation of epitaxial graphene on SiC(0001). ACS Nano 2009, 4, 153-158.

28

Hupalo, M.; Conrad, E. H.; Tringides, M. C. Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B 2009, 80, 041401.

29

Norimatsu, W.; Takada, J.; Kusunoki, M. Formation mechanism of graphene layers on SiC (0001) in a high-pressure argon atmosphere. Phys. Rev. B 2011, 84, 035424.

30

Camara, N.; Rius, G.; Huntzinger, J. -R.; Tiberj, A.; Magaud, L.; Mestres, N.; Godignon, P.; Camassel, J. Early stage formation of graphene on the C face of 6H-SiC. Appl. Phys. Lett. 2008, 93, 263102.

31

Hite, J. K.; Twigg, M. E.; Tedesco, J. L.; Friedman, A. L.; Myers-Ward, R. L.; Eddy, C. R., Jr; Gaskill, D. K. Epitaxial graphene nucleation on C-face silicon carbide. Nano Lett. 2011, 11, 1190-1194.

32

Hwang, Y. B.; Lee, E. -K.; Choi, H.; Yun, K. -H.; Lee, M.; Chung, Y. -C. Atomic behavior of carbon atoms on a Si removed 3C-SiC (111) surface during the early stage of epitaxial graphene growth. J. Appl. Phys. 2012, 111, 104324.

33

Ryosuke, I.; Takahiro, K.; Yasuyuki, S.; Masato, I.; Yoshihiro, K.; Koichi, K. Molecular dynamics simulation of graphene growth by surface decomposition of 6H-SiC(0001) and (0001). Jpn. J. Appl. Phys. 2014, 53, 065601.

34

Tang, C.; Meng, L. J.; Xiao, H. P.; Zhong, J. X. Growth of graphene structure on 6H-SiC(0001): Molecular dynamics simulation. J. Appl. Phys. 2008, 103, 063505.

35

Daas, B. K.; Omar, S. U.; Shetu, S.; Daniels, K. M.; Ma, S. Sudarshan, T. S.; Chandrashekhar, M. V. S.; Comparison of epitaxial graphene growth on polar and nonpolar 6H-SiC faces: On the growth of multilayer films. Cryst. Growth Des. 2012, 12, 3379-3387.

36

Low, T.; Perebeinos, V.; Tersoff, J.; Avouris, P. Deformation and scattering in graphene over substrate steps. Phys. Rev. Lett. 2012, 108, 096601.

37

Ostler, M.; Deretzis, I.; Mammadov, S.; Giannazzo, F.; Nicotra, G.; Spinella, C.; Seyller, T.; La Magna, A. Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B 2013, 88, 085408.

38

Lin, J. J.; Guo, L. W.; Jia, Y. P.; Yang, R.; Wu, S.; Huang, J.; Guo, Y.; Li, Z. L.; Zhang, G. Y.; Chen, X. L. Identification of dominant scattering mechanism in epitaxial graphene on SiC. Appl. Phys. Lett. 2014, 104, 183102.

39

Deng, D. H.; Pan, X. L.; Zhang, H.; Fu, Q.; Tan, D. L.; Bao, X. Freestanding graphene by thermal splitting of silicon carbide granules. Adv. Mater. 2010, 22, 2168-2171.

40

Muehlhoff, L.; Choyke, W. J.; Bozack, M. J.; Yates, J. T. Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(0001). J. Appl. Phys. 1986, 60, 2842-2853.

41

Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 2001, 64, 591-648.

42

Rauls, E.; Hajnal, Z.; Deák, P.; Frauenheim, T. Theoretical study of the nonpolar surfaces and their oxygen passivation in 4H- and 6H-SiC. Phys. Rev. B 2001, 64, 245323.

43

Seyller, T.; Graupner, R.; Sieber, N.; Emtsev, K. V.; Ley, L.; Tadich, A.; Riley, J. D.; Leckey, R. C. G. Hydrogen terminated 4H-SiC (1100) and (1120) surfaces studied by synchrotron x-ray photoelectron spectroscopy. Phys. Rev. B 2005, 71, 245333.

44

Ming, F.; Zangwill, A. Model for the epitaxial growth of graphene on 6H-SiC(0001). Phys. Rev. B 2011, 84, 115459.

45

Florian, B. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181-1221.

46

Kusunoki, M.; Suzuki, T.; Hirayama, T.; Shibata, N.; Kaneko, K. A formation mechanism of carbon nanotube films on SiC(0001). Appl. Phys. Lett. 2000, 77, 531-533.

47

Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.

48

Bernstein, H. J. Bond energies in hydrocarbons. Trans. Faraday Soc. 1962, 58, 2285-2306.

49

Walsh, R. Bond dissociation energies in organosilicon compounds. In: Silicon in Organic, Organometallic and Polymer Chemistry. M. A. Brook, Ed.; Wiley: New York, 1998.

50

Mélinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Playing with carbon and silicon at the nanoscale. Nat. Mater. 2007, 6, 479-490.

51

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009-5015.

52

Li, J. D.; Croiset, E.; Ricardez-Sandoval, L. Carbon clusters on the Ni (111) surface: A density functional theory study. Phys. Chem. Chem. Phys. 2014, 16, 2954-2961.

53

Yuan, Q. H.; Ding, F. Formation of carbyne and graphyne on transition metal surfaces. Nanoscale 2014, 6, 12727-12731.

54

Zhang, L. Y.; Zhao, X. J.; Xue, X. L.; Shi, J. L.; Li, C.; Ren, X. Y.; Niu, C. Y.; Jia, Y.; Guo, Z. X.; Li, S. F. Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates. Phys. Chem. Chem. Phys. 2015, 17, 30270-30278.

55

Van Wesep, R. G.; Chen, H.; Zhu, W. G.; Zhang, Z. Y. Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111). J. Chem. Phys. 2011, 134, 171105.

56

Zhuang, J. N.; Zhao, R. Q.; Dong, J. C.; Yan, T. Y.; Ding, F. Evolution of domains and grain boundaries in graphene: A kinetic Monte Carlo simulation. Phys. Chem. Chem. Phys. 2016, 18, 2932-2939.

57

Ding, F.; Yakobson, B. I. Energy-driven kinetic Monte Carlo method and its application in fullerene coalescence. J. Phys. Chem. Lett. 2014, 5, 2922-2926.

58

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.

59

Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048-5079.

60

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

61

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.

62

Donald, W. B.; Olga, A. S.; Judith, A. H.; Steven, J. S.; Boris, N.; Susan, B. S. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. : Condens. Matter 2002, 14, 783-802.

File
12274_2017_1911_MOESM1_ESM.pdf (3.4 MB)
12274_2017_1911_MOESM3_ESM.mpg (10 MB)
12274_2017_1911_MOESM4_ESM.mpg (12.7 MB)
12274_2017_1911_MOESM5_ESM.mpg (20 MB)
12274_2017_1911_MOESM6_ESM.mpg (23.2 MB)
12274_2017_1911_MOESM8_ESM.mpg (15.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 September 2017
Revised: 23 October 2017
Accepted: 03 November 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51420105003, 11525415, 11327901, 61274114, 11674052, and 11604047) and the Fundamental Research Funds for the Central Universities (Nos. 2242016K41039, MTEC-2015M03, and NJ20150026) and the Natural Science Foundation of Jiangsu Province (No. BK20160694). W. Z. and F. D. acknowledge the support of Institute for Basic Science, Republic of Korea (No. IBS-R019-D1). X. W. would like to acknowledge support from the Projects of Science and Technology Commission of Shanghai Municipality (No. 14DZ2260800).

Return