Journal Home > Volume 11 , Issue 9

With their unique optical properties associated with the excitation of surface plasmons, metal nanoparticles (NPs) have been used in optical sensors and devices. The organization of these NPs into arrays can induce coupling effects to engineer new optical responses. In particular, lattice plasmon resonances (LPRs), which arise from coherent interactions and coupling among NPs in periodic arrays, have shown great promise for realizing narrow linewidths, angle-dependent dispersions, and high wavelength tunability of optical spectra. By engineering the materials, shapes, sizes, and spatial arrangements of NPs within arrays, one can tune the LPR-based spectral responses and electromagnetic field distributions to deliver a multitude of improvements, including a high figure-of-merit, superior light–matter interaction, and multiband operation. In this review, we discuss recent progress in designing and applying new metal nanostructures for LPR-based applications. We conclude this review with our perspective on the future opportunities and challenges of LPR-based devices.


menu
Abstract
Full text
Outline
About this article

Design and applications of lattice plasmon resonances

Show Author's information Bharath Bangalore RajeevaLinhan LinYuebing Zheng( )
Materials Science and Engineering ProgramDepartment of Mechanical EngineeringThe University of Texas at AustinAustinTexas78712USA

Abstract

With their unique optical properties associated with the excitation of surface plasmons, metal nanoparticles (NPs) have been used in optical sensors and devices. The organization of these NPs into arrays can induce coupling effects to engineer new optical responses. In particular, lattice plasmon resonances (LPRs), which arise from coherent interactions and coupling among NPs in periodic arrays, have shown great promise for realizing narrow linewidths, angle-dependent dispersions, and high wavelength tunability of optical spectra. By engineering the materials, shapes, sizes, and spatial arrangements of NPs within arrays, one can tune the LPR-based spectral responses and electromagnetic field distributions to deliver a multitude of improvements, including a high figure-of-merit, superior light–matter interaction, and multiband operation. In this review, we discuss recent progress in designing and applying new metal nanostructures for LPR-based applications. We conclude this review with our perspective on the future opportunities and challenges of LPR-based devices.

Keywords: sensors, plasmonics, coupling, lattice plasmon resonance, nanoparticle array

References(106)

1

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

2

Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

3

Shiohara, A.; Wang, Y. S.; Liz-Marzán, L. M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol. C: Photochem. Rev. 2014, 21, 2–25.

4

Shen, S. X.; Meng, L. Y.; Zhang, Y. J.; Han, J. B.; Ma, Z. W.; Hu, S.; He, Y. H.; Li, J. F.; Ren, B.; Shih, T. M. et al. Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities. Nano Lett. 2015, 15, 6716–6721.

5

Liu, Y. M.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507.

6

Deng, W.; Xie, F.; Baltar, H. T. M. C. M.; Goldys, E. M. Metal-enhanced fluorescence in the life sciences: Here, now and beyond. Phys. Chem. Chem. Phys. 2013, 15, 15695– 15708.

7

Brolo, A. G. Plasmonics for future biosensors. Nat. Photonics 2012, 6, 709–713.

8

Wu, X. F.; Zhang, J. S.; Chen, J. J.; Zhao, C. L.; Gong, Q. H. Refractive index sensor based on surface-plasmon interference. Opt. Lett. 2009, 34, 392–394.

9

Rajeeva, B. B.; Zheng, Y. B. Molecular plasmonics: From molecular-scale measurements and control to applications. In Nanotechnology: Delivering on the Promise Volume 2; Cheng, H. N.; Doemeny, L.; Geraci, C. L.; Schmidt, D. G., Eds.; ACS Publications: Washington, DC, 2016; pp 23–52.

10

Rajeeva, B. B.; Menz, R.; Zheng, Y. B. Towards rational design of multifunctional theranostic nanoparticles: What barriers do we need to overcome? Nanomedicine 2014, 9, 1767–1770.

11

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

12

Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors 2015, 15, 15684–15716.

13

Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638– 5649.

14

Lin, L. H.; Yi, Y. S. Orthogonal and parallel lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays. Opt. Express 2015, 23, 130–142.

15

Xie, L. P.; Yan, X. J.; Du, Y. N. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules. Biosens. Bioelectron. 2014, 53, 58–64.

16

Tokel, O.; Inci, F.; Demirci, U. Advances in plasmonic technologies for point of care applications. Chem. Rev. 2014, 114, 5728–5752.

17

Zhou, W.; Odom, T. W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat. Nanotechnol. 2011, 6, 423–427.

18

Cotrufo, M.; Osorio, C. I.; Koenderink, A. F. Spin-dependent emission from arrays of planar chiral nanoantennas due to lattice and localized plasmon resonances. ACS Nano 2016, 10, 3389–3397.

19

Zhou, W.; Hua, Y.; Huntington, M. D.; Odom, T. W. Delocalized lattice plasmon resonances show dispersive quality factors. J. Phys. Chem. Lett. 2012, 3, 1381–1385.

20

Lassiter, J. B.; Aizpurua, J.; Hernandez, L. I.; Brandl, D. W.; Romero, I.; Lal, S.; Hafner, J. H.; Nordlander, P.; Halas, N. J. Close encounters between two nanoshells. Nano Lett. 2008, 8, 1212–1218.

21

Rajeeva, B. B.; Hernandez, D. S.; Wang, M. S.; Perillo, E.; Lin, L. H.; Scarabelli, L.; Pingali, B.; Liz-Marzán, L. M.; Dunn, A. K.; Shear, J. B. et al. Regioselective localization and tracking of biomolecules on single gold nanoparticles. Adv. Sci. 2015, 2, 1500232.

22

Chang, W. S.; Link, S. Enhancing the sensitivity of single- particle photothermal imaging with thermotropic liquid crystals. J. Phys. Chem. Lett. 2012, 3, 1393–1399.

23

Wang, G. F.; Sun, W.; Luo, Y.; Fang, N. Resolving rotational motions of nano-objects in engineered environments and live cells with gold nanorods and differential interference contrast microscopy. J. Am. Chem. Soc. 2010, 132, 16417– 16422.

24

Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 2011, 111, 3858–3887.

25

Hoggard, A.; Wang, L. Y.; Ma, L. L.; Fang, Y.; You, G.; Olson, J.; Liu, Z.; Chang, W. S.; Ajayan, P. M.; Link, S. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 2013, 7, 11209–11217.

26

Wang, F.; Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 2006, 97, 206806.

27

Li, W. B.; Zhang, L.; Zhou, J. H.; Wu, H. K. Well-designed metal nanostructured arrays for label-free plasmonic biosensing. J. Mater. Chem. C 2015, 3, 6479–6492.

28

Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

29

Zou, S. L.; Janel, N.; Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 2004, 120, 10871–10875.

30

Zou, S. L.; Schatz, G. C. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J. Chem. Phys. 2004, 121, 12606–12612.

31

Tetz, K. A.; Pang, L.; Fainman, Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt. Lett. 2006, 31, 1528–1530.

32

Markel, V. A. Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure. J. Mod. Opt. 1993, 40, 2281–2291.

33

Zhao, L. L.; Kelly, K. L.; Schatz, G. C. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B 2003, 107, 7343–7350.

34

Haynes, C. L.; McFarland, A. D.; Zhao, L. L.; Van Duyne, R. P.; Schatz, G. C.; Gunnarsson, L.; Prikulis, J.; Kasemo, B.; Kall, M. Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 2003, 107, 7337–7342.

35

Guo, R.; Hakala, T. K.; Törmä, P. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays. Phys. Rev. B 2017, 95, 155423.

36

Hicks, E. M.; Zou, S. L.; Schatz, G. C.; Spears, K. G.; Van Duyne, R. P.; Gunnarsson, L.; Rindzevicius, T.; Kasemo, B.; Kall, M. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 2005, 5, 1065–1070.

37

Chu, Y. Z.; Schonbrun, E.; Yang, T.; Crozier, K. B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 2008, 93, 181108.

38

Lin, L. H.; Zheng, Y. B. Engineering of parallel plasmonic- photonic interactions for on-chip refractive index sensors. Nanoscale 2015, 7, 12205–12214.

39

Vitrey, A.; Aigouy, L.; Prieto, P.; García-Martín, J. M.; González, M. U. Parallel collective resonances in arrays of gold nanorods. Nano Lett. 2014, 14, 2079–2085.

40

Offermans, P.; Schaafsma, M. C.; Rodriguez, S. R. K.; Zhang, Y. C.; Crego-Calama, M.; Brongersma, S. H.; Gómez Rivas, J. Universal scalingof the figure of merit of plasmonic sensors. ACS Nano 2011, 5, 5151–5157.

41

Nikitin, A. G.; Nguyen, T.; Dallaporta, H. Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies. Appl. Phys. Lett. 2013, 102, 221116.

42

Lin, L. H.; Zheng, Y. B. Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci. Rep. 2015, 5, 14788

43

Miller, M. M.; Lazarides, A. A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 2005, 109, 21556–21565.

44

Auguié, B.; Bendaña, X. M.; Barnes, W. L.; de Abajo, F. J. G. Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate. Phys. Rev. B 2010, 82, 155447.

45

Brian, B.; Sepúlveda, B.; Alaverdyan, Y.; Lechuga, L. M.; Käll, M. Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates. Opt. Express 2009, 17, 2015–2023.

46

Habteyes, T. G.; Dhuey, S.; Wood, E.; Gargas, D.; Cabrini, S.; Schuck, P. J.; Alivisatos, A. P.; Leone, S. R. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 2012, 6, 5702–5709.

47

Otte, M. A.; Estévez, M. C.; Carrascosa, L. G.; González- Guerrero, A. B.; Lechuga, L. M.; Sepúlveda, B. Improved biosensing capability with novel suspended nanodisks. J. Phys. Chem. C 2011, 115, 5344–5351.

48

Martinsson, E.; Otte, M. A.; Shahjamali, M. M.; Sepulveda, B.; Aili, D. Substrate effect on the refractive index sensitivity of silver nanoparticles. J. Phys. Chem. C 2014, 118, 24680–24687.

49

Dmitriev, A.; Hagglund, C.; Chen, S.; Fredriksson, H.; Pakizeh, T.; Kall, M.; Sutherland, D. S. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett. 2008, 8, 3893–3898.

50

Du, Y. C.; Shi, L. N.; Hong, M. H.; Li, H. L.; Li, D. M.; Liu, M. A surface plasmon resonance biosensor based on gold nanoparticle array. Opt. Commun. 2013, 298299, 232–236.

51

Cetin, A. E.; Etezadi, D.; Altug, H. Accessible nearfields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy. Adv. Opt. Mater. 2014, 2, 866–872.

52

Huck, C.; Toma, A.; Neubrech, F.; Chirumamilla, M.; Vogt, J.; De Angelis, F.; Pucci, A. Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared. ACS Photonics 2015, 2, 497–505.

53

Auguié, B.; Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 2008, 101, 143902.

54

Thackray, B. D.; Kravets, V. G.; Schedin, F.; Anton, G.; Thomas, P. A.; Grigorenko, A. N. Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photonics 2014, 1, 1116–1126.

55

Lin, L. H.; Zheng, Y. B. Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: Enhanced robustness and wavelength tunability. Opt. Lett. 2015, 40, 2060–2063.

56

Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

57

Szunerits, S.; Praig, V. G.; Manesse, M.; Boukherroub, R. Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 2008, 19, 195712.

58

Bangalore Rajeeva, B.; Lin, L. H.; Perillo, E. P.; Peng, X. L.; Yu, W. W.; Dunn, A.; Zheng, Y. B. High-resolution bubble printing of quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 16725–16733.

59

Rajeeva, B. B.; Alabandi, M. A.; Lin, L. H.; Perillo, E. P.; Dunn, A. K.; Zheng, Y. B. Patterning and fluorescence tuning of quantum dots with haptic-interfaced bubble printing. J. Mater. Chem. C 2017, 5, 5693–5699.

60

Lee, Y. H.; Lee, C. K.; Tan, B. R.; Tan, J. M. R.; Phang, I. Y.; Ling, X. Y. Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.

61

Lodewijks, K.; Van Roy, W.; Borghs, G.; Lagae, L.; Van Dorpe, P. Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett. 2012, 12, 1655–1659.

62

Rodriguez, S. R. K.; Abass, A.; Maes, B.; Janssen, O. T. A.; Vecchi, G.; Gómez Rivas, J. Coupling bright and dark plasmonic lattice resonances. Phys. Rev. X 2011, 1, 021019.

63

Shen, Y.; Zhou, J. H.; Liu, T. R.; Tao, Y. T.; Jiang, R. B.; Liu, M. X.; Xiao, G. H.; Zhu, J. H.; Zhou, Z. K.; Wang, X. H. et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 2381.

64

Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA- functionalized gold nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 4093–4096.

65

Ding, C. F.; Li, H.; Hu, K. C.; Lin, J. M. Electrochemical immunoassay of hepatitis B surface antigen by the amplification of gold nanoparticles based on the nanoporous gold electrode. Talanta 2010, 80, 1385–1391.

66

Huang, C. C.; Chang, H. T. Selective gold-nanoparticle- based "turn-on" fluorescent sensors for detection of mercury(Ⅱ) in aqueous solution. Anal. Chem. 2006, 78, 8332–8338.

67

Li, W. B.; Jiang, X. Q.; Xue, J. C.; Zhou, Z. K.; Zhou, J. H. Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein. Biosens. Bioelectron. 2015, 68, 468–474.

68

Cesario, J.; Quidant, R.; Badenes, G.; Enoch, S. Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt. Lett. 2005, 30, 3404–3406.

69

Gramotnev, D. K.; Pors, A.; Willatzen, M.; Bozhevolnyi, S. I. Gap-plasmon nanoantennas and bowtie resonators. Phys. Rev. B 2012, 85, 045434.

70

Moreau, A.; Ciraci, C.; Mock, J. J.; Hill, R. T.; Wang, Q.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012, 492, 86–89.

71

Akselrod, G. M.; Argyropoulos, C.; Hoang, T. B.; Ciracì, C.; Fang, C.; Huang, J. N.; Smith, D. R.; Mikkelsen, M. H. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840.

72

Lin, Q. Y.; Li, Z. Y.; Brown, K. A.; O'Brien, M. N.; Ross, M. B.; Butun, Y. Z. S.; Butun, S.; Chen, P. C.; Schatz, G. C.; Dravid, V. P. et al. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 2015, 15, 4699–4703.

73

Li, Z. Y.; Butun, S.; Aydin, K. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 2014, 8, 8242–8248.

74

Wang, C.; Zhang, Q.; Song, Y.; Chou, S. Y. Plasmonic bar- coupled dots-on-pillar cavity antenna with dual resonances for infrared absorption and sensing: Performance and nanoimprint fabrication. ACS Nano 2014, 8, 2618–2624.

75

Bahramipanah, M.; Dutta-Gupta, S.; Abasahl, B.; Martin, O. J. F. Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit. ACS Nano 2015, 9, 7621–7633.

76

Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R.; van Hulst, N. F. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 2010, 329, 930–933.

77

Vecchi, G.; Giannini, V.; Gómez Rivas, J. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys. Rev. B 2009, 80, 201401.

78

Rodriguez, S. R. K.; Lozano, G.; Verschuuren, M. A.; Gomes, R.; Lambert, K.; De Geyter, B.; Hassinen, A.; Van Thourhout, D.; Hens, Z.; Gómez Rivas, J. Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light. Appl. Phys. Lett. 2012, 100, 111103.

79

Guo, R.; Derom, S.; Väkeväinen, A. I.; van Dijk-Moes, R. J. A.; Liljeroth, P.; Vanmaekelbergh, D.; Törmä, P. Controlling quantum dot emission by plasmonic nanoarrays. Opt. Express 2015, 23, 28206–28215.

80

Vecchi, G.; Giannini, V.; Gómez Rivas, J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 2009, 102, 146807.

81

Shi, L.; Hakala, T. K.; Rekola, H. T.; Martikainen, J. P.; Moerland, R. J.; Törmä, P. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett. 2014, 112, 153002.

82

Väkeväinen, A. I.; Moerland, R. J.; Rekola, H. T.; Eskelinen, A. P.; Martikainen, J. P.; Kim, D. H.; Törmä, P. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett. 2014, 14, 1721–1727.

83

Todisco, F.; Esposito, M.; Panaro, S.; De Giorgi, M.; Dominici, L.; Ballarini, D.; Fernández-Domínguez, A. I.; Tasco, V.; Cuscuna, M.; Passaseo, A. et al. Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states. ACS Nano 2016, 10, 11360–11368.

84

Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 2011, 5, 4046–4055.

85

Lee, S. W.; Lee, K. S.; Ahn, J.; Lee, J. J.; Kim, M. G.; Shin, Y. B. Highly sensitive biosensing using arrays of plasmonic au nanodisks realized by nanoimprint lithography. ACS Nano 2011, 5, 897–904.

86

Raza, S.; Toscano, G.; Jauho, A. P.; Mortensen, N. A.; Wubs, M. Refractive-index sensing with ultrathin plasmonic nanotubes. Plasmonics 2013, 8, 193–199.

87

Briscoe, J. L.; Cho, S. Y. A periodically coupled plasmon nanostructure for refractive index sensing. Opt. Express 2011, 19, 8815–8820.

88

Vazquez-Mena, O.; Sannomiya, T.; Tosun, M.; Villanueva, L. G.; Savu, V.; Voros, J.; Brugger, J. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. ACS Nano 2012, 6, 5474–5481.

89

Chung, P. Y.; Lin, T. H.; Schultz, G.; Batich, C.; Jiang, P. Nanopyramid surface plasmon resonance sensors. Appl. Phys. Lett. 2010, 96, 261108.

90

Kravets, V. G.; Schedin, F.; Jalil, R.; Britnell, L.; Gorbachev, R. V.; Ansell, D.; Thackray, B.; Novoselov, K. S.; Geim, A. K.; Kabashin, A. V. et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 2013, 12, 304–309.

91

Liu, S. D.; Qi, X.; Zhai, W. C.; Chen, Z. H.; Wang, W. J.; Han, J. B. Polarization state-based refractive index sensing with plasmonic nanostructures. Nanoscale 2015, 7, 20171– 20179.

92

Kravets, V. G.; Schedin, F.; Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 2008, 101, 087403.

93

D'Andrea, C.; Bochterle, J.; Toma, A.; Huck, C.; Neubrech, F.; Messina, E.; Fazio, B.; Maragò, O. M.; Di Fabrizio, E.; de la Chapelle, M. L. et al. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy. ACS Nano 2013, 7, 3522–3531.

94

Chu, Y. Z.; Banaee, M. G.; Crozier, K. B. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 2010, 4, 2804–2810.

95

Liu, Z. Q.; Liu, G. Q.; Liu, X. S.; Huang, S.; Wang, Y.; Pan, P. P.; Liu, M. L. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 2015, 26, 235702.

96

Aslan, E.; Turkmen, M. Novel dual-band resonator nanoantenna array for infrared detection applications. Sensor Mater. 2013, 25, 689–696.

97

Liu, Z. Q.; Shao, H. B.; Liu, G. Q.; Liu, X. S.; Zhou, H. Q.; Hu, Y.; Zhang, X. N.; Cai, Z. J.; Gu, G. λ3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl. Phys. Lett. 2014, 104, 081116.

98

Cetin, A. E.; Kaya, S.; Mertiri, A.; Aslan, E.; Erramilli, S.; Altug, H.; Turkmen, M. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures. Photonics Nanostruct. Fund. Appl. 2015, 15, 73–80.

99

Yang, A. K.; Odom, T. W. Breakthroughs in photonics 2014: Advances in plasmonic nanolasers. IEEE Photonics J. 2015, 7, 0700606.

100

Bergman, D. J.; Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 2003, 90, 027402.

101

Zhou, W.; Dridi, M.; Suh, J. Y.; Kim, C. H.; Co, D. T.; Wasielewski, M. R.; Schatz, G. C.; Odom, T. W. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 2013, 8, 506–511.

102

Yang, A. K.; Hoang, T. B.; Dridi, M.; Deeb, C.; Mikkelsen, M. H.; Schatz, G. C.; Odom, T. W. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 2015, 6, 6939.

103

Yang, A. K.; Li, Z. Y.; Knudson, M. P.; Hryn, A. J.; Wang, W. J.; Aydin, K.; Odom, T. W. Unidirectional lasing from template-stripped two-dimensional plasmonic crystals. ACS Nano 2015, 9, 11582–11588.

104

Wang, D. Q.; Yang, A. K.; Wang, W. J.; Hua, Y.; Schaller, R. D.; Schatz, G. C.; Odom, T. W. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotechnol. 2017, 12, 889–894.

105

Yang, A. K.; Hryn, A. J.; Bourgeois, M. R.; Lee, W. K.; Hu, J.; Schatz, G. C.; Odom, T. W. Programmable and reversible plasmon mode engineering. Proc. Natl. Acad. Sci. USA 2016, 113, 14201–14206.

106

Kuznetsov, A. I.; Evlyukhin, A. B.; Goncalves, M. R.; Reinhardt, C.; Koroleva, A.; Arnedillo, M. L.; Kiyan, R.; Marti, O.; Chichkov, B. N. Laser fabrication of large-scale nanoparticle arrays for sensing applications. ACS Nano 2011, 5, 4843–4849.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2017
Revised: 27 October 2017
Accepted: 03 November 2017
Published: 09 August 2018
Issue date: September 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany, part of Springer Nature 2017

Acknowledgements

Acknowledgements

The authors acknowledge the financial supports of the Office of Naval Research Young Investigator Program (No. N00014-17-1-2424) and of the Army Research Office (No. W911NF-17-1-0561).

Return