Journal Home > Volume 11 , Issue 5

Red phosphorus-carbon nanotube (P@CNT) composites were synthesized as anodes for advanced lithium ion batteries via a facile solution-based method at room temperature. In these composites, the entangled P@CNT nanostructure reduced the aggregation of both components and allowed their complete utilization in a synergetic manner. The highly conductive and porous CNT framework, along with the nanoscale red P particles intimately anchored on the CNT surface, conferred the composite with excellent ion/electron transport properties. Volume expansion within the red P particles was mitigated by their amorphous and nanoscale features, which can be well buffered by the soft CNTs, therefore maintaining an integrated electrode structure during cycling. When used as an anode in lithium ion batteries, the composite exhibited a reversible capacity of 960 mAh·g-1 (based on the overall weight of the composite) after 120 cycles at 200 mA·g-1. The composite also delivered excellent high-rate capability with capacities of 886, 847, and 784 mAh·g-1 at current densities of 2, 000, 4, 000, and 10, 000 mA·g-1, respectively, which reveals its potential as a high performance anode for lithium ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries

Show Author's information Li Sun( )Yu ZhangDeyang ZhangJingang LiuYihe Zhang( )
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral MaterialsSchool of Materials Science and TechnologyChina University of GeosciencesBeijing100083China

Abstract

Red phosphorus-carbon nanotube (P@CNT) composites were synthesized as anodes for advanced lithium ion batteries via a facile solution-based method at room temperature. In these composites, the entangled P@CNT nanostructure reduced the aggregation of both components and allowed their complete utilization in a synergetic manner. The highly conductive and porous CNT framework, along with the nanoscale red P particles intimately anchored on the CNT surface, conferred the composite with excellent ion/electron transport properties. Volume expansion within the red P particles was mitigated by their amorphous and nanoscale features, which can be well buffered by the soft CNTs, therefore maintaining an integrated electrode structure during cycling. When used as an anode in lithium ion batteries, the composite exhibited a reversible capacity of 960 mAh·g-1 (based on the overall weight of the composite) after 120 cycles at 200 mA·g-1. The composite also delivered excellent high-rate capability with capacities of 886, 847, and 784 mAh·g-1 at current densities of 2, 000, 4, 000, and 10, 000 mA·g-1, respectively, which reveals its potential as a high performance anode for lithium ion batteries.

Keywords: carbon nanotubes, anode, lithium ion battery, red phosphorus

References(44)

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

3

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167– 1176.

4

Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodiumion storage. Nano Lett. 2013, 13, 5480–5484.

5

Gao, H.; Zhou, T. F.; Zheng, Y.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1601037.

6

Marino, C.; Debenedetti, A.; Fraisse, B.; Favier, F.; Monconduit, L. Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13, 346–349.

7

Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/ carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

8

Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.

9

Dahbi, M.; Yabuuchi, N.; Fukunishi, M.; Kubota, K.; Chihara, K.; Tokiwa, K.; Yu, X. F.; Ushiyama, H.; Yamashita, K.; Son, J. Y. et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: Investigation of the electrode/interface. Chem. Mater. 2016, 28, 1625–1635.

10

Jin, W.; Wang, Z. G.; Fu, Y. Q. Monolayer black phosphorus as potential anode materials for Mg-ion batteries. J. Mater. Sci. 2016, 51, 7355–7360.

11

Chen, X. H.; Xu, G. H.; Ren, X. H.; Li, Z. J.; Qi, X.; Huang, K.; Zhang, H.; Huang, Z. Y.; Zhong, J. X. A black/red phosphorus hybrid as an electrode material for highperformance Li-ion batteries and supercapacitors. J. Mater. Chem. A 2017, 5, 6581–6588.

12

Zhang, Y. Y.; Rui, X. H.; Tang, Y. X.; Liu, Y. Q.; Wei, J. Q.; Chen, S.; Leow, W. R.; Li, W. L.; Liu, Y. J.; Deng, J. Y. et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.

13

Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633–4636.

14

Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

15

Liu, D. H.; Lü, H. Y.; Wu, X. L.; Hou, B. H.; Wan, F.; Bao, S. D.; Yan, Q. Y.; Xie, H. M.; Wang, R. S. Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19738–19746.

16

Liu, D. H.; Lü, H. Y.; Wu, X. L.; Wang, J.; Yan, X.; Zhang, J. P.; Geng, H. B.; Zhang, Y.; Yan, Q. Y. A new strategy for developing superior electrode materials for advanced batteries: Using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horiz. 2016, 1, 496–501.

17

Wan, F.; Guo, J. Z.; Zhang, X. H.; Zhang, J. P.; Sun, H. Z.; Yan, Q. Y.; Han, D. X.; Niu, L.; Wu, X. L. In situ binding Sb nanospheres on graphene via oxygen bonds as superior anode for ultrafast sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 7790–7799.

18

Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. C.; Wang, C. S. Red phosphorus single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015, 9, 3254–3264.

19

Xu, Z. W.; Zeng, Y.; Wang, L. Y.; Li, N.; Chen, C.; Li, C. Y.; Li, J.; Lv, H. M.; Kuang, L. Y.; Tian, X. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries. J. Power Sources 2017, 356, 18–26.

20

Wu, X. L.; Guo, Y. G.; Su, J.; Xiong, J. W.; Zhang, Y. L.; Wan, L. J. Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1155–1160.

21

Yan, X.; Ye, H.; Wu, X. L.; Zheng, Y. P.; Wan, F.; Liu, M. K.; Zhang, X. H.; Zhang, J. P.; Guo, Y. G. Three-dimensional carbon nanotube networks enhanced sodium trimesic: A new anode material for sodium ion batteries and Na-storage mechanism revealed by ex situ studies. J. Mater. Chem. A 2017, 5, 16622–16629.

22

Wang, L. Y.; Guo, H. L.; Wang, W.; Teng, K. Y.; Xu, Z. W.; Chen, C.; Li, C. Y.; Yang, C. Y.; Hu, C. S. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta 2016, 211, 499–506.

23

Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054–2060.

24

Li, W. H.; Yang, Z. Z.; Jiang, Y.; Yu, Z. R.; Gu, L.; Yu, Y. Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 2014, 78, 455–462.

25

Wang, Y. L.; Tian, L. Y.; Yao, Z. H.; Li, F.; Li, S.; Ye, S. H. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim. Acta 2015, 163, 71–76.

26

Li, J. Y.; Wang, L.; He, X. M.; Wang, J. L. Effect of pore size distribution of carbon matrix on the performance of phosphorus@carbon material as anode for lithium-ion batteries. ACS Sustainable Chem. Eng. 2016, 4, 4217–4223.

27

Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zuo, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblack multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965.

28

Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

29

Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034–9037.

30

Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931–8933.

31

Fan, Q.; Chupas, P. J.; Whittingham, M. S. Characterization of amorphous and crystalline tin-cobalt anodes. Electrochem. Solid-State Lett. 2007, 10, A274–A278.

32

Yuan, D. M.; Cheng, J. L.; Qu, G. X.; Li, X. D.; Ni, W.; Wang, B.; Liu, H. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J. Power Sources 2016, 301, 131–137.

33

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.

34

Liu, Y. H.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Cao, X.; Ma, Y. Q.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F. et al. Red phosphorus nano-dots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano 2017, 11, 5530–5537.

35

Yu, Z. X.; Song, J. X.; Gordin, M. L.; Yi, R.; Tang, D. H.; Wang, D. H. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2015, 2, 1400020.

36

Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100–104.

37

Zaug, J. M.; Soper, A. K.; Clark, S. M. Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks. Nat. Mater. 2008, 7, 890–899.

38

Xiao, H.; Xia, Y.; Gan, Y. P.; Huang, H.; Liang, C.; Tao, X. Y.; Xu, L. S.; Zhang, W. K. Facile fabrication of red phosphorus/TiO2 composites for lithium ion batteries. RSC Adv. 2014, 4, 60914–60919.

39

Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H.; An, Y. L. A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1222– 1233.

40

Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphoruscarbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.

41

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

42

Lesel, B. K.; Ko, J. S.; Dunn, B.; Tolbert, S. H. Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 2016, 10, 7572–7581.

43

Yang, L. C.; Li, X.; He, S. N.; Du, G. H.; Yu, X.; Liu, J. W.; Gao, Q. S.; Hu, R. Z.; Zhu, M. Mesoporous Mo2C/N-doped carbon heteronanowires as high-rate and long-life anode materials for Li-ion batteries. J. Mater. Chem. A 2016, 4, 10842–10849.

44

Lou, P. L.; Cui, Z. H.; Jia, Z. Q.; Sun, J. Y.; Tan, Y. B.; Guo, X. X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 2017, 11, 3705–3715.

File
12274_2017_1903_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2017
Revised: 12 October 2017
Accepted: 25 October 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities of China (No. 2652015425) and the National Natural Science Foundation of China (No. 51572246).

Return