Journal Home > Volume 11 , Issue 5

Magnetic metals (Fe, Co, Ni) and alloys thereof are easily synthesized as nanoparticles, but obtaining highly dispersed graphene-based magnetic nanomaterials remains challenging. Here, three CoNi/graphene nanocomposites (CoNi/GN) are successfully assembled for the first time via a one-pot strategy without templating by manipulating the reaction time and solvents used for the same precursors. Moreover, the reduction of graphene oxide utilizing this method is more effective than that by conventional methods and the alloy particles are firmly embedded on the GN substrate. Compared to n- and p-CoNi/GN nanocomposites, o-CoNi/GN nanocomposites show the best electromagnetic wave absorption properties with the maximum reflection loss of-31.0 dB at 4.9 GHz for a thickness of 4 mm; the effective absorption bandwidth (< 10.0 dB) is 7.3 GHz (9.5–16.8 GHz) for a thickness of 2 mm. The structures and electromagnetic wave absorption mechanisms of the three composites were also investigated. This research provides a new platform for the development of magnetic alloy nanoparticles in the field of microwave-absorbing devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene

Show Author's information Genban Sun1,2Hong Wu2Qingliang Liao1( )Yue Zhang1( )
State Key Laboratory for Advanced Metals and MaterialsSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
Beijing Key Laboratory of Energy Conversion and Storage Materials and College of ChemistryBeijing Normal UniversityBeijing100875China

Abstract

Magnetic metals (Fe, Co, Ni) and alloys thereof are easily synthesized as nanoparticles, but obtaining highly dispersed graphene-based magnetic nanomaterials remains challenging. Here, three CoNi/graphene nanocomposites (CoNi/GN) are successfully assembled for the first time via a one-pot strategy without templating by manipulating the reaction time and solvents used for the same precursors. Moreover, the reduction of graphene oxide utilizing this method is more effective than that by conventional methods and the alloy particles are firmly embedded on the GN substrate. Compared to n- and p-CoNi/GN nanocomposites, o-CoNi/GN nanocomposites show the best electromagnetic wave absorption properties with the maximum reflection loss of-31.0 dB at 4.9 GHz for a thickness of 4 mm; the effective absorption bandwidth (< 10.0 dB) is 7.3 GHz (9.5–16.8 GHz) for a thickness of 2 mm. The structures and electromagnetic wave absorption mechanisms of the three composites were also investigated. This research provides a new platform for the development of magnetic alloy nanoparticles in the field of microwave-absorbing devices.

Keywords: nanoclusters, microwave absorption, alloy, CoNi/graphene nanocomposites, electromagnetism

References(74)

1

Li, N.; Hu, C. W.; Cao, M. H. Enhanced microwave absorbing performance of CoNi alloy nanoparticles anchored on a spherical carbon monolith. Phys. Chem. Chem. Phys. 2013, 15, 7685–7689.

2

Barakat, N. A. M.; Motlak, M. CoxNiy-decorated graphene as novel, stable and super effective non-precious electrocatalyst for methanol oxidation. Appl. Catal. B: Environ. 2014, 154–155, 221–231.

3

Ahmed, J.; Sharma, S.; Ramanujachary, K. V.; Lofland, S. E.; Ganguli, A. K. Microemulsion-mediated synthesis of cobalt (pure fcc and hexagonal phases) and cobalt-nickel alloy nanoparticles. J. Colloid Interface Sci. 2009, 336, 814–819.

4

Ung, D.; Viau, G.; Ricolleau, C.; Warmont, F.; Gredin, P.; Fiévet, F. F. CoNi nanowires synthesized by heterogeneous nucleation in liquid polyol. Adv. Mater. 2005, 17, 338–344.

5

Evangelisti, M.; Candini, A.; Ghirri, A.; Affronte, M.; Brechin, E. K.; McInnes, E. J. L. Spin-enhanced magnetocaloric effect in molecular nanomagnets. Appl. Phys. Lett. 2005, 87, 072504.

6

Kurlyandskaya, G. V.; Bhagat, S. M.; Luna, C.; Vazquez, M. Microwave absorption of nanoscale CoNi powders. J. Appl. Phys. 2006, 99, 104308.

7

Toneguzzo, P.; Viau, G.; Acher, O.; Fiévet-Vincent, F.; Fiévet, F. Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 1998, 10, 1032–1035.

DOI
8

Hu, M. J.; Lu, Y.; Zhang, S.; Guo, S. R.; Lin, B.; Zhang, M.; Yu, S. H. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings. J. Am. Chem. Soc. 2008, 130, 11606–11607.

9

Ergeneman, O.; Sivaraman, K. M.; Pané, S.; Pellicer, E.; Teleki, A.; Hirt, A. M.; Baró, M. D.; Nelson, B. J. Morphology, structure and magnetic properties of cobalt-nickel films obtained from acidic electrolytes containing glycine. Electrochim. Acta 2011, 56, 1399–1408.

10

Fan, H. M.; Yi, J. B.; Yang, Y.; Kho, K. W.; Tan, H. R.; Shen, Z. X.; Ding, J.; Sun, X. W.; Olivo, M. C.; Feng, Y. P. Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications. ACS Nano 2009, 3, 2798–2808.

11

Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

12

Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

13

Ren, Y. L.; Zhu, C. L.; Qi, L. H.; Gao, H.; Chen, Y. J. Growth of γ-Fe2O3 nanosheet arrays on graphene for electromagnetic absorption applications. RSC Adv. 2014, 4, 21510–21516.

14

Li, X. H.; Feng, J.; Du, Y. P.; Bai, J. T.; Fan, H. M.; Zhang, H. L.; Peng, Y.; Li, F. S. One-pot synthesis of CoFe2O4/ graphene oxide hybrids and their conversion into FeCo/ graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 2015, 3, 5535–5546.

15

Kong, L.; Yin, X. W.; Zhang, Y. J.; Yuan, X. Y.; Li, Q.; Ye, F.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013, 117, 19701–19711.

16

Li, Z. X.; Li, X. H.; Zong, Y.; Tan, G. G.; Sun, Y.; Lan, Y. Y.; He, M.; Ren, Z. Y.; Zheng, X. L. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 2017, 115, 493–502.

17

Arief, I.; Biswas, S.; Bose, S. FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 2017, 9, 19202–19214.

18

Zheng, X. L.; Feng, J.; Zong, Y.; Miao, H.; Hu, X. Y.; Bai, J. T.; Li, X. H. Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 2015, 3, 4452–4463.

19

He, J. Z.; Wang, X. X.; Zhang, Y. L.; Cao, M. S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 2016, 4, 7130–7140.

20

Wang, L.; Xing, H. L.; Gao, S. G.; Ji, X. L.; Shen, Z. Y. Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 2017, 5, 2005–2014.

21

Chen, T. T.; Deng, F.; Zhu, J.; Chen, C. F.; Sun, G. B.; Ma, S. L.; Yang, X. J. Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190–15197.

22

Pan, G. H.; Zhu, J.; Ma, S. L.; Sun, G. B.; Yang, X. J. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS App. Mater. Interfaces 2013, 5, 12716–12724.

23

Wu, H.; Li, H. F.; Sun, G. B.; Ma, S. L.; Yang, X. J. Synthesis, characterization and electromagnetic performance of nanocomposites of graphene with α-LiFeO2 and β-LiFe5O8. J. Mater. Chem. C, 2015, 3, 5457–5466.

24

Ma, T.; Yuan, M. W.; Islam, S. M.; Li, H. F.; Ma, S. L.; Sun, G. B.; Yang, X. J. FeNi3 alloy nanocrystals grown on graphene: Controllable synthesis, in-depth characterization and enhanced electromagnetic performance. J. Alloys Compounds 2016, 678, 468–477.

25

Guo, J.; Lan, M.; Wang, S. L.; He, Y.; Zhang, S. J.; Xiang, G.; Boi, F. S. Enhanced saturation magnetization in buckypaperfilms of thin walled carbon nanostructures filled with Fe3C, FeCo, FeNi, CoNi, Co and Ni crystals: The key role of Cl. Phys. Chem. Chem. Phys. 2015, 17, 18159–18166.

26

Yang, R. L.; Wang, B. C.; Xiang, J. Y.; Mu, C. P.; Zhang, C.; Wen, F. S.; Wang, C.; Su, C.; Liu, Z. Y. Fabrication of NiCo2 anchored graphene nanosheets by liquid phase exfoliation for excellent microwave absorber. ACS Appl. Mater. Interfaces 2017, 9, 12673–12679.

27

Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.

28

Feng, W. Q.; Yang, L.; Cao, N.; Du, C.; Dai, H. M.; Luo, W.; Cheng, G. Z. In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane. Int. J. Hydrogen Energy 2014, 39, 3371–3380.

29

Yang, L.; Su, J.; Meng, X. Y.; Luo, W.; Cheng, G. Z. In situ synthesis of graphene supported Ag@CoNi core–shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane. J. Mater. Chem. A 2013, 1, 10016–10023.

30

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

31

Mourdikoudis, S.; Liz-Marzan, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476.

32

Wang, C.; Hou, Y. L.; Kim, J.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem., Int. Ed. 2007, 46, 6333–6335.

33

Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

34

Varfolomeev, M. A.; Rakipov, I. T.; Solomonov, B. N.; Marczak, W. Speed of sound, density, and related thermodynamic excess properties of binary mixtures of 2‑pyrrolidone and N‑methyl-2-pyrrolidone with acetonitrile and chloroform. J. Chem. Eng. Data 2016, 61, 1032–1046.

35

Rafique, M. Y.; Pan, L. Q.; Khan, W. S.; Iqbal, M. Z.; Qiu, H. M.; Farooq, M. H.; Ellahi, M.; Guo, Z. G. Controlled synthesis, phase formation, growth mechanism, and magnetic properties of 3-D CoNi alloy microstructures composed of nanorods. CrystEngComm 2013, 15, 5314–5325.

36

He, H. K.; Gao, C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces 2010, 2, 3201–3210.

37

Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157–3164.

38

Khandelwal, M.; Kumar, A. One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications. J. Mater. Chem. A 2015, 3, 22975–22988.

39

Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.

40

Chen, C. F.; Chen, T. T.; Wang, H. L.; Sun, G. B.; Yang, X. J. A rapid, one-step, variable-valence metal ion assisted reduction method for graphene oxide. Nanotechnology 2011, 22, 405602.

41

Su, J.; Cao, M. H.; Ren, L.; Hu, C. W. Fe3O4-graphene nanocomposites with improved lithium storage and magnetism Properties. J. Phys. Chem. C 2011, 115, 14469–14477.

42

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

43

Mao, S.; Huang, X. K.; Chang, J. B.; Cui, S. M.; Zhou, G. H.; Chen, J. H. One-step, continuous synthesis of a spherical Li4Ti5O12/graphene composite as an ultra-long cycle life lithium-ion battery anode. NPG Asia Mater. 2015, 7, e224.

44

Liu, X. F.; Giordano, C.; Antonietti, M. A facile molten-salt route to graphene synthesis. Small 2014, 10, 193–200.

45

Park, S. H.; Kim, H. K.; Yoon, S. B.; Lee, C. W.; Ahn, D.; Lee, S. I.; Roh, K. C.; Kim, K. B. Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices. Chem. Mater. 2015, 27, 457–465.

46

Park, J.; Back, T.; Mitchel, W. C.; Kim, S. S.; Elhamri, S.; Boeckl, J.; Fairchild, S. B.; Naik, R.; Voevodin, A. A. Approach to multifunctional device platform with epitaxial graphene on transition metal oxide. Sci. Rep. 2015, 5, 14374.

47

Guan, Q.; Cheng, J. L.; Li, X. D.; Wang, B.; Huang, L.; Nie, F. D.; Ni, W. Low temperature vacuum synthesis of triangular CoO nanocrystal/graphene nanosheets composites with enhanced lithium storage capacity. Sci. Rep. 2015, 5, 10017.

48

Ibrahim, M.; Marcelot-Garcia, C.; Atmane, K. A.; Berrichi, E.; Lacroix, L. M.; Zwick, A.; Warot-Fonrose, B.; Lachaize, S.; Decorse, P.; Piquemal, J. Y. et al. Carbon coating, carburization, and high-temperature stability improvement of cobalt nanorods. J. Phys. Chem. C 2013, 117, 15808– 15816.

49

Dedryvėre, R.; Laruelle, S.; Grugeon, S.; Poizot, P.; Gonbeau, D.; Tarascon, J. M. Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem. Mater. 2004, 16, 1056–1061.

50

Ye, J.; Chen, Q. W.; Qi, H. P.; Tao, N. Formation of nickel dendritic crystals with peculiar orientations by magneticinduced aggregation and limited diffusion. Cryst. Growth Des. 2008, 8, 2464–2468.

51

Klokkenburg, M.; Vonk, C.; Claesson, E. M.; Meeldijk, J. D.; Erné, B. H.; Philipse, A. P. Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite. J. Am. Chem. Soc. 2004, 126, 16706–16707.

52

Zhao, H. T.; Zhang, B.; Zhang, J. S.; Zhang, L. F.; Han, X. J.; Xu, P.; Zhou, Y. Field-assisted synthesis and electromagnetic properties of aligned magnetic nanostructures by γ-irradiation induced reduction. J. Phys. Chem. C 2010, 114, 21214–21218.

53

Song, N. N.; Ke, Y. J.; Yang, H. T.; Zhang, H.; Zhang, X. Q.; Shen, B. G.; Cheng, Z. H. Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7. Sci. Rep. 2013, 3, 2291.

54

Liu, Q. H.; Xu, X. H.; Xia, W. X.; Che, R. C.; Chen, C.; Cao, Q.; He, J. G. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Nanoscale 2015, 7, 1736–1743.

55

Lü, Y. Y.; Wang, Y. T.; Li, H. L.; Lin, Y.; Jiang, Z. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 13604–13611.

56

Su, Q. M.; Li, J.; Zhong, G.; Du, G. H.; Xu, B. S. In situ synthesis of iron/nickel sulfide nanostructures-filled carbon nanotubes and their electromagnetic and microwave-absorbing properties. J. Phys. Chem. C 2011, 115, 1838– 1842.

57

Li, G.; Xie, T. S.; Yang, S. L.; Jin, J. H.; Jiang, J. M. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J Phys. Chem. C 2012, 116, 9196–9201.

58

Yan, C.; Cheng, X. Q.; Zhang, Y.; Yin, D. Z.; Gong, C. H.; Yu, L. G.; Zhang, J. W.; Zhang, Z. J. Ferromagnetism and microwave electromagnetism of iron-doped titanium nitride nanocrystals. J. Phys. Chem. C 2012, 116, 26006–26012.

59

Chen, Y. J.; Zhang, F.; Zhao, G. G.; Fang, X. Y.; Jin, H. B.; Gao, P.; Zhu, C. L.; Cao, M. S.; Xiao, G. Synthesis, multinonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods. J. Phys. Chem. C 2010, 114, 9239–9244.

60

Wang, C.; Han, X. J.; Xu, P.; Zhang, X. L.; Du, Y. C.; Hu, S. R.; Wang, J. Y.; Wang, X. H. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 2011, 98, 072906.

61

Chen, D. Z.; Wang, G. S.; He, S.; Liu, J.; Guo, L.; Cao, M. S. Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties. J. Mater. Chem. A 2013, 1, 5996–6003.

62

Sun, X.; He, J. P.; Li, G. X.; Tang, J.; Wang, T.; Guo, Y. X.; Xue, H. R. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties, J. Mater. Chem. C 2013, 1, 765–777.

63

Shanenkov, I.; Sivkov, A.; Ivashutenko, A.; Zhuravlev, V.; Guo, Q.; Li, L. P.; Li, G. S.; Wei, G. D.; Han, W. Magnetite hollow microspheres with a broad absorption bandwidth of 11.9 GHz: Toward promising lightweight electromagnetic microwave absorption. Phys. Chem. Chem. Phys. 2017, 19, 19975–19983.

64

Tian, L. H.; Yan, X. D.; Xu, J. L.; Wallenmeyer, P.; Murowchick, J.; Liu, L.; Chen, X. B. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J. Mater. Chem. A 2015, 3, 12550–12556.

65

Mandal, P. K.; Lapanik, A.; Wipf, R.; Stuehn, B.; Haase, W. Sub-hertz relaxation process in chiral smectic mixtures doped with silver nanoparticles. Appl. Phys. Lett. 2012, 100, 073112.

66

Zhu, C. L.; Zhang, M. L.; Qiao, Y. J.; Xiao, G.; Zhang, F.; Chen, Y. J. Fe3O4/TiO2 core/shell nanotubes: Synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 2010, 114, 16229–16235.

67

Wang, Z. Z.; Bi, H.; Wang, P. H.; Wang, M.; Liu, Z. W.; Shen, L.; Liu, X. S. Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobaltcobalt oxide nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 3796–3801.

68

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

69

Kong, L.; Yin, X. W.; Ye, F.; Li, Q.; Zhang, L. T.; Cheng, L. F. Electromagnetic wave absorption properties of ZnObased materials modified with ZnAl2O4 nanograins. J. Phys. Chem. C 2013, 117, 2135–2146.

70

Watts, P. C. P.; Hsu, W. K.; Barnes, A.; Chambers, B. High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv. Mater. 2003, 15, 600–603.

71

Wang, Z. Z.; Wu, M. Z.; Jin, S. W.; Li, G.; Ma, Y. Q.; Wang, P. H. Ni3Zn ferrite octahedral nanoparticles with high microwave permeability and high magnetic loss tangent. J. Magn. Magn. Mater. 2013, 344, 101–104.

72

Yu, H. L.; Wang, T. S.; Wen, B.; Lu, M. M.; Xu, Z.; Zhu, C. L.; Chen, Y. J.; Xue, X. Y.; Sun, C. W.; Cao, M. S. Graphene/polyaniline nanorod arrays: Synthesis and excellent electromagnetic absorption properties. J. Mater. Chem. 2012, 22, 21679–21685.

73

Wang, Q. S.; Lei, Z. Y.; Chen, Y. J.; Ouyang, Q. Y.; Gao, P.; Qi, L. H.; Zhu, C. L.; Zhang, J. Z. Branched polyaniline/ molybdenum oxide organic/inorganic heteronanostructures: Synthesis and electromagnetic absorption properties. J. Mater. Chem. A 2013, 1, 11795–11801.

74

Zhang, X. F.; Dong, X. L.; Huang, H.; Liu, Y. Y.; Wang, W. N.; Zhu, X. G.; Lv, B.; Lei, J. P.; Lee, C. G. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 2006, 89, 053115.

File
12274_2017_1899_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 August 2017
Revised: 19 October 2017
Accepted: 25 October 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This research was supported by the National Key Research and development Program of China (No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities (No. B14003), the National Natural Science Foundation of China (NSFC) (Nos. 51722203, 21771024, 51672026 and 51527802), the Research Fund of Co-construction Program from Beijing Municipal Commission of Education (No. Z161100002116027), and the Fundamental Research Funds for the Central Universities.

Return