Journal Home > Volume 11 , Issue 5

Peptide-based nanostructures have received much attention in the field of drug targeting. In fact, peptides have many advantages such as simplicity of the structure, biocompatibility, and chemical diversity. Moreover, some peptides, which are called cell-penetrating peptides, can cross cellular membranes and carry small molecules, small interfering RNA, or viruses inside live cells. These molecules are often covalently or noncovalently linked to cargoes, thus forming amphiphilic conjugates that can self-assemble. Supramolecular nanostructures formed from peptides are used in nanomedicine as a carrier to protect a drug and to target cancer cells. This review explores aliphatic-chain–conjugated peptides and drug-conjugated peptides that can self-assemble. Special emphasis is placed on the synthesis procedure, nanostructure formation, and biological activity.


menu
Abstract
Full text
Outline
About this article

Self-assembly of peptide-based nanostructures: Synthesis and biological activity

Show Author's information Léna GuyonElise Lepeltier( )Catherine Passirani
Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021UBL Université Bretagne LoireAngers F-49933France

Abstract

Peptide-based nanostructures have received much attention in the field of drug targeting. In fact, peptides have many advantages such as simplicity of the structure, biocompatibility, and chemical diversity. Moreover, some peptides, which are called cell-penetrating peptides, can cross cellular membranes and carry small molecules, small interfering RNA, or viruses inside live cells. These molecules are often covalently or noncovalently linked to cargoes, thus forming amphiphilic conjugates that can self-assemble. Supramolecular nanostructures formed from peptides are used in nanomedicine as a carrier to protect a drug and to target cancer cells. This review explores aliphatic-chain–conjugated peptides and drug-conjugated peptides that can self-assemble. Special emphasis is placed on the synthesis procedure, nanostructure formation, and biological activity.

Keywords: self-assembly, nanoparticle, peptide, cell penetrating peptide

References(68)

1

Bangham, A. D.; Standish, M. M.; Watkins, J. C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252.

2

Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.

3

Croy, S. R.; Kwon, G. S. Polymeric micelles for drug delivery. Curr. Pharm. Des. 2006, 12, 4669–4684.

4

Mandal, A.; Bisht, R.; Rupenthal, I. D.; Mitra, A. K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J. Control. Release 2017, 248, 96–116.

5

Panahi, Y.; Farshbaf, M.; Mohammadhosseini, M.; Mirahadi, M.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 788–799.

6

Mehrabi, M.; Esmaeilpour, P.; Akbarzadeh, A.; Saffari, Z.; Farahnak, M.; Farhangi, A.; Chiani, M. Efficacy of PEGylated liposomal etoposide nanoparticles on breast cancer cell lines. Turk. J. Med. Sci. 2016, 46, 567–571.

7

Vahed Zununi, S.; Salehi, R.; Davaran, S.; Sharifi, S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C 2017, 71, 1327–1341.

8

Venev, S. V.; Reineker, P.; Potemkin, I. I. Direct and inverse micelles of diblock copolymers with a polyelectrolyte block: Effect of equilibrium distribution of counterions. Macromolecules 2010, 43, 10735–10742.

9

Gennes, P. G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, NY, 1979.

10

Birshtein, T. M.; Zhulina, E. B. Scaling theory of supermolecular structures in block copolymer-solvent systems: 1. Model of micellar structures. Polymer 1989, 30, 170–177.

11

Jain, S.; Bates, F. S. On the origins of morphological complexity in block copolymer surfactants. Science 2003, 300, 460–464.

12

Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525–1568.

13

Israelachvili, J. N. Thermodynamic and geometric aspects of amphiphile aggregation into micelles, vesicles and bilayers and the interactions between them. In Physics of Amphiphiles: Micelles, Vesicles and Microemulsions: Proceedings of the International School of Physics, Enrico Fermi, Course Xc. Degiorgio, V.; Corti, M., Eds.; Elsevier Science Ltd: Amsterdam, 1985; pp 24–58.

14

Israelachvili, J. N. 20-Soft and biological structures. In Intermolecular and Surface Forces. 3rd Ed. Israelachvili, J. N., Ed.; Academic Press: San Diego, 2011; pp 535–576.

DOI
15

Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Front matter. In Surfactants and Polymers in Aqueous Solution. 2nd ed. Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B., Eds.; John Wiley & Sons, Ltd: Chichester, 2003.

DOI
16

Lepeltier, E.; Bourgaux, C.; Maksimenko, A.; Meneau, E.; Rosilio, V.; Sliwinski, E.; Zouhiri, F.; Desmaële, D.; Couvreur, P. Self-assembly of polyisoprenoyl gemcitabine conjugates: Influence of supramolecular organization on their biological activity. Langmuir 2014, 30, 6348–6357.

17

Naik, S. S.; Savin, D. A. Poly(Z-lysine)-based organogels: Effect of interfacial frustration on gel strength. Macromolecules 2009, 42, 7114–7121.

18

Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 2002, 417, 424–428.

19

Holowka, E. P.; Pochan, D. J.; Deming, T. J. Charged polypeptide vesicles with controllable diameter. J. Am. Chem. Soc. 2005, 127, 12423–12428.

20

Denisov, I. G.; Grinkova, Y. V.; Lazarides, A. A.; Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 2004, 126, 3477–3487.

21

Sigg, S. J.; Postupalenko, V.; Duskey, J. T.; Palivan, C. G.; Meier, W. Stimuli-responsive codelivery of oligonucleotides and drugs by self-assembled peptide nanoparticles. Biomacromolecules 2016, 17, 935–945.

22

Yao, C.; Liu, J. Y.; Wu, X.; Tao, Z. G.; Gao, Y.; Zhu, Q. G.; Li, J. F.; Zhang, L. J.; Hu, C. L.; Gu, F. F. et al. Reducible self-assembling cationic polypeptide-based micelles mediate co-delivery of doxorubicin and microRNA-34a for androgen-independent prostate cancer therapy. J. Control. Release 2016, 232, 203–214.

23

Tai, Z. G.; Wang, X. Y.; Tian, J.; Gao, Y.; Zhang, L. J.; Yao, C.; Wu, X.; Zhang, W.; Zhu, Q. G.; Gao, S. Biodegradable stearylated peptide with internal disulfide bonds for efficient delivery of siRNA in vitro and in vivo. Biomacromolecules 2015, 16, 1119–1130.

24

Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Peptide-amphiphile nanofibers: A versatile scaffold for the preparation of self-assembling materials. Proc. Natl. Acad. Sci. USA 2002, 99, 5133–5138.

25

Mata, A.; Geng, Y. B.; Henrikson, K. J.; Aparicio, C.; Stock, S. R.; Satcher, R. L.; Stupp, S. I. Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix. Biomaterials 2010, 31, 6004–6012.

26

Mammadov, R.; Mammadov, B.; Toksoz, S.; Aydin, B.; Yagci, R.; Tekinay, A. B.; Guler, M. O. Heparin mimetic peptide nanofibers promote angiogenesis. Biomacromolecules 2011, 12, 3508–3519.

27

Standley, S. M.; Toft, D. J.; Cheng, H.; Soukasene, S.; Chen, J.; Raja, S. M.; Band, V.; Band, H.; Cryns, V. L.; Stupp, S. I. Induction of cancer cell death by self-assembling nanostructures incorporating a cytotoxic peptide. Cancer Res. 2010, 70, 3020–3026.

28

Missirlis, D.; Krogstad, D. V.; Tirrell, M. Internalization of p5314-29 peptide amphiphiles and subsequent endosomal disruption results in SJSA-1 cell death. Mol. Pharmaceutics 2010, 7, 2173–2184.

29

Missirlis, D.; Khant, H.; Tirrell, M. Mechanisms of peptide amphiphile internalization by SJSA-1 cells in vitro. Biochemistry 2009, 48, 3304–3314.

30

Anderson, J. M.; Kushwaha, M.; Tambralli, A.; Bellis, S. L.; Camata, R. P.; Jun, H. W. Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix- mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules 2009, 10, 2935–2944.

31

Black, M.; Trent, A.; Kostenko, Y.; Lee, J. S.; Olive, C.; Tirrell, M. Self-assembled peptide amphiphile micelles containing a cytotoxic t-cell epitope promote a protective immune response in vivo. Adv. Mater. 2012, 24, 3845–3849.

32

Webber, M. J.; Tongers, J.; Newcomb, C. J.; Marquardt, K. T.; Bauersachs, J.; Losordo, D. W.; Stupp, S. I. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc. Natl. Acad. Sci. USA 2011, 108, 13438– 13443.

33

Boato, F.; Thomas, R. M.; Ghasparian, A.; Freund-Renard, A.; Moehle, K.; Robinson, J. A. Synthetic virus-like particles from self-assembling coiled-coil lipopeptides and their use in antigen display to the immune system. Angew. Chem., Int. Ed. 2007, 46, 9015–9018.

34

Tang, Q.; Cao, B.; Wu, H. Y.; Cheng, G. Cholesterol-peptide hybrids to form liposome-like vesicles for gene delivery. PLoS One 2013, 8, e54460.

35

Matsubara, T.; Shibata, R.; Sato, T. Binding of hemagglutinin and influenza virus to a peptide-conjugated lipid membrane. Front. Microbiol. 2016, 7, 468.

36

Peters, D.; Kastantin, M.; Kotamraju, V. R.; Karmali, P. P.; Gujraty, K.; Tirrell, M.; Ruoslahti, E. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl. Acad. Sci. USA 2009, 106, 9815–9819.

37

Tornoe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1, 2, 3]-triazoles by regiospecific copper(Ⅰ)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064.

38

Beniash, E.; Hartgerink, J. D.; Storrie, H.; Stendahl, J. C.; Stupp, S. I. Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater. 2005, 1, 387–397.

39

Matson, J. B.; Newcomb, C. J.; Bitton, R.; Stupp, S. I. Nanostructure-templated control of drug release from peptide amphiphile nanofiber gels. Soft Matter 2012, 8, 3586–3595.

40

Cui, H. G.; Muraoka, T.; Cheetham, A. G.; Stupp, S. I. Self- assembly of giant peptide nanobelts. Nano Lett. 2009, 9, 945–951.

41

Trent, A.; Ulery, B. D.; Black, M. J.; Barrett, J. C.; Liang, S. M.; Kostenko, Y.; David, N. A.; Tirrell, M. V. Peptide amphiphile micelles self-adjuvant group a streptococcal vaccination. AAPS J. 2015, 17, 380–388.

42

Matsubara, T.; Iijima, K.; Yamamoto, N.; Yanagisawa, K.; Sato, T. Density of GM1 in nanoclusters is a critical factor in the formation of a spherical assembly of amyloid β-protein on synaptic plasma membranes. Langmuir 2013, 29, 2258–2264.

43

Iijima, K.; Soga, N.; Matsubara, T.; Sato, T. Observations of the distribution of GM3 in membrane microdomains by atomic force microscopy. J. Colloid Interface Sci. 2009, 337, 369–374.

44

Pakalns, T.; Haverstick, K. L.; Fields, G. B.; McCarthy, J. B.; Mooradian, D. L.; Tirrell, M. Cellular recognition of synthetic peptide amphiphiles in self-assembled monolayer films. Biomaterials 1999, 20, 2265–2279.

45

Ma, W.; Cheetham, A. G.; Cui, H. G. Building nanostructures with drugs. Nano Today 2016, 11, 13–30.

46

Gewirtz, D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999, 57, 727–741.

47

Dreher, M. R.; Raucher, D.; Balu, N.; Colvin Michael, O.; Ludeman, S. M.; Chilkoti, A. Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy. J. Control. Release 2003, 91, 31–43.

48

Furgeson, D. Y.; Dreher, M. R.; Chilkoti, A. Structural optimization of a 'smart' doxorubicin–polypeptide conjugate for thermally targeted delivery to solid tumors. J. Control. Release 2006, 110, 362–369.

49

MacKay, A. J.; Chen, M. N.; McDaniel, J. R.; Liu, W. G.; Simnick, A. J.; Chilkoti, A. Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 2009, 8, 993–999.

50

Mastria, E. M.; Chen, M. N.; McDaniel, J. R.; Li, X. H.; Hyun, J.; Dewhirst, M. W.; Chilkoti, A. Doxorubicin- conjugated polypeptide nanoparticles inhibit metastasis in two murine models of carcinoma. J. Control. Release 2015, 208, 52–58.

51

Cheng, H.; Zhu, J. Y.; Xu, X. D.; Qiu, W. X.; Lei, Q.; Han, K.; Cheng, Y. J.; Zhang, X. Z. Activable cell-penetrating peptide conjugated prodrug for tumor targeted drug delivery. Appl. Mater. Interfaces 2015, 7, 16061–16069.

52

Shi, N. Q.; Gao, W.; Xiang, B.; Qi, X. R. Enhancing cellular uptake of activable cellpenetrating peptide–doxorubicin conjugate by enzymatic cleavage. Int. J. Nanomedicine 2012, 7, 1613–1621.

53

Yang, Y. F.; Yang, Y.; Xie, X. Y.; Cai, X.S.; Zhang, H.; Gong, W.; Wang, Z. Y.; Mei, X. G. PEGylated liposomes with NGR ligand and heat-activable cell penetrating peptide- doxorubicin conjugate for tumor-specific therapy. Biomaterials 2014, 35, 4368–4381.

54

Liang, J. F.; Yang, V. C. Synthesis of doxorubicin-peptide conjugate with multidrug resistant tumor cell killing activity. Bioorg. Med. Chem. Lett. 2005, 15, 5071–5075.

55

Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. Plant antitumor agents. Ⅵ. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327.

56

Tian, R.; Wang, H. M.; Niu, R. F.; Ding, D. Drug delivery with nanospherical supramolecular cell penetrating peptide- taxol conjugates containing a high drug loading. J. Colloid Interface Sci. 2015, 453, 15–20.

57

Dubikovskaya, E. A.; Thorne, S. H.; Pillow, T. H.; Contag, C. H.; Wender, P. A. Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc. Natl. Acad. Sci. USA 2008, 105, 12128–12133.

58

Thomas, C. J.; Rahier, N. J.; Hecht, S. M. Camptothecin: Current perspectives. Bioorg. Med. Chem. 2004, 12, 1585–1604.

59

Choi, H.; Jeena, M. T.; Palanikumar, L.; Jeong, Y.; Park, S.; Lee, E.; Ryu, J. H. The HA-incorporated nanostructure of a peptide–drug amphiphile for targeted anticancer drug delivery. Chem. Commun. 2016, 52, 5637–5640.

60

Peng, M. Y.; Qin, S. Y.; Jia, H. Z.; Zheng, D. W.; Rong, L.; Zhang, X. Z. Self-delivery of a peptide based prodrug for tumor-targeting therapy. Nano Res. 2015, 9, 663–673.

61

Ossipov, D. A. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opinion Drug Deliv. 2010, 7, 681–703.

62

Fish, R. H.; Jaouen, G. Bioorganometallic chemistry: Structural diversity of organometallic complexes with bioligands and molecular recognition studies of several supramolecular hosts with biomolecules, alkali-metal ions, and organometallic pharmaceuticals. Organometallics 2003, 22, 2166–2177.

63

Fouda, M. F. R.; Abd-Elzaher, M. M.; Abdelsamaia, R. A.; Labib, A. A. On the medicinal chemistry of ferrocene. Appl. Organomet. Chem. 2007, 21, 613–625.

64

Adhikari, B.; Singh, C.; Shah, A.; Lough, A. J.; Kraatz, H. B. Amino acid chirality and ferrocene conformation guided self-assembly and gelation of ferrocene-peptide conjugates. Chem. -Eur. J. 2015, 21, 11560–11572.

65

Miklán, Z.; Szabó, R.; Zsoldos-Mády, V.; Reményi, J.; Bánóczi, Z.; Hudecz, F. New ferrocene containing peptide conjugates: Synthesis and effect on human leukemia (HL-60) cells. Biopolymers 2007, 88, 108–114.

66

Huang, X.; Brazel, C. S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136.

67

Ma, C. Y.; Yin, G. F.; You, F.; Wei, Y.; Huang, Z. B.; Chen, X. C.; Yan, D. H. A specific cell-penetrating peptide induces apoptosis in SKOV3 cells by down-regulation of Bcl-2. Biotechnol. Lett. 2013, 35, 1791–1797.

68

Gao, H. L.; Zhang, Q. Y.; Yang, Y. T.; Jiang, X. G.; He, Q. Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy. Int. J. Pharm. 2015, 478, 240–250.

Publication history
Copyright

Publication history

Received: 08 March 2017
Revised: 20 October 2017
Accepted: 21 October 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017
Return