Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Heteroatom-doped carbon nanomaterials have attracted significant attention as anode materials for sodium-ion batteries (SIBs). Herein, we demonstrate a conjugated polymer-mediated synthesis of sulfur and nitrogen co-doped carbon nanotubes (S/N-CT) via the carbonization of sulfur-containing polyaniline (PANI) nanotubes. It is found that the carbonization technique greatly influences the structural features and thus the Na-storage behavior of the S/N-CT materials. The carbon nanotubes developed using a two-step carbonization process (heating at 400 ℃ and then at 900 ℃) exhibit a high specific surface area, enlarged interlayer distance, small charge transfer resistance, enhanced reaction kinetics, as well as a large number of defects and active sites; further, they exhibit a high reversible capacity of 340 mAh·g–1 at 0.1 A·g–1 and a remarkable cycling stability with a capacity of 141 mAh·g–1 at 5 A·g–1 (94% retention after 3, 000 cycles). Direct carbonization of conjugated polymers with a specific morphology is an eco-friendly and low-cost technique for the synthesis of dual atom-doped carbon nanomaterials for application in energy devices. However, the carbonization process should be carefully controlled in order to better tune the structure–property relationship.
Qu, G. X.; Cheng, J. L.; Li, X. D.; Yuan, D. M.; Chen, P. N.; Chen, X. L.; Wang, B.; Peng, H. S. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28, 3646-3652.
Pan, S. W.; Ren, J.; Fang, X.; Peng, H. S. Integration: An effective strategy to develop multifunctional energy storage devices. Adv. Energy Mater. 2016, 6, 1501867.
Ni, J. F.; Wang, W. C.; Wu, C.; Liang, H. C.; Maier, J.; Yu, Y.; Li, L. Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 2017, 29, 1605607.
Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384-3393.
Zhao, F. P.; Gong, Q. F.; Traynor, B.; Zhang, D.; Li, J. J.; Ye, H. L.; Chen, F. J.; Han, N.; Wang, Y. Y.; Sun, X. H. et al. Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Res. 2016, 9, 3162-3170.
Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.
You, Y.; Yao, H. R.; Xin, S.; Yin, Y. X.; Zuo, T. T.; Yang, C. P.; Guo, Y. G.; Cui, Y.; Wan, L. J.; Goodenough, J. B. Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 2016, 28, 7243-7248.
Zhao, Y.; Zhang, Y.; Sun, H.; Dong, X. L.; Cao, J. Y.; Wang, L.; Xu, Y. F.; Ren, J.; Hwang, Y.; Son, I. H. et al. A self-healing aqueous lithium-ion battery. Angew. Chem., Int. Ed. 2016, 55, 14384-14388.
Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544-4551.
Roh, H. K.; Kim, H. K.; Kim, M. S.; Kim, D. H.; Chung, K. Y.; Roh, K. C.; Kim, K. B. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016, 9, 1844-1855.
You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117-128.
Li, L.; Seng, K. H.; Li, D.; Xia, Y. Y.; Liu, H. K.; Guo, Z. P. SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res. 2014, 7, 1466-1476.
Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529-3614.
Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897-907.
Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M.; Chen, X. L.; Nie, Z. M.; Gu, M.; Saraf, L. V.; Exarhos, G.; Zhang, J. G. et al. Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett. 2013, 13, 3909-3914.
Wu, L. J.; Lang, J. W.; Zhang, P.; Zhang, X.; Guo, R. S.; Yan, X. B. Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. J. Mater. Chem. A 2016, 4, 18392-18400.
Zhang, Y.; Wang, C. W.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 2017, 7, 1600173.
Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. -M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873-877.
Yan, Y.; Yin, Y. -X.; Guo, Y. -G.; Wan, L. -J. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 1301584.
Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042-2048.
Li, D. D.; Zhang, L.; Chen, H. B.; Wang, J.; Ding, L. -X.; Wang, S. Q.; Ashman, P. J.; Wang, H. H. Graphene-based nitrogen-doped carbon sandwich nanosheets: A new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2016, 4, 8630-8635.
Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. D. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 2016, 6, 1502217.
Yun, Y. S.; Park, Y. -U.; Chang, S. -J.; Kim, B. H.; Choi, J.; Wang, J. J.; Zhang, D.; Braun, P. V.; Jin, H. -J.; Kang, K. Crumpled graphene paper for high power sodium battery anode. Carbon 2016, 99, 658-664.
Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861-7866.
Chien, C. T.; Hiralal, P.; Wang, D. Y.; Huang, I. S.; Chen, C. C.; Chen, C. W.; Amaratunga, G. A. J. Graphene-based integrated photovoltaic energy harvesting/storage device. Small 2015, 11, 2929-2937.
Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Sulfur and nitrogen co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 2016, 28, 1610-1615.
Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.
Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.
Ye, J. C.; Zang, J.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J. Mater. Chem. A 2016, 4, 13223-13227.
Qiao, Y.; Ma, M. Y.; Liu, Y.; Li, S.; Lu, Z. S.; Yue, H. Y.; Dong, H. Y.; Cao, Z. X.; Yin, Y. H.; Yang, S. T. First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. J. Mater. Chem. A 2016, 4, 15565-15574.
Yang, C. L.; Li, W. H.; Yang, Z. Z.; Gu, L.; Yu, Y. Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries. Nano Energy 2015, 18, 12-19.
Li, W.; Zhou, M.; Li, H. M.; Wang, K. L.; Cheng, S. J.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916-2921.
Luo, C.; Zhu, Y. J.; Borodin, O.; Gao, T.; Fan, X. L.; Xu, Y. H.; Xu, K.; Wang, C. S. Activation of oxygen-stabilized sulfur for Li and Na batteries. Adv. Funct. Mater. 2016, 26, 745-752.
Li, S.; Wu, D. Q.; Liang, H. W.; Wang, J. Z.; Zhuang, X. D.; Mai, Y. Y.; Su, Y. Z.; Feng, X. L. Metal-nitrogen doping of mesoporous carbon/graphene nanosheets by self-templating for oxygen reduction electrocatalysts. ChemSusChem 2014, 7, 3002-3006.
Wan, K.; Long, G. -F.; Liu, M. -Y.; Du, L.; Liang, Z. -X.; Tsiakaras, P. Nitrogen-doped ordered mesoporous carbon: Synthesis and active sites for electrocatalysis of oxygen reduction reaction. Appl. Catal. B-Environ. 2015, 165, 566-571.
He, Y. Z.; Han, X. J.; Du, Y. C.; Song, B.; Xu, P.; Zhang, B. Bifunctional nitrogen-doped microporous carbon microspheres derived from poly(o-methylaniline) for oxygen reduction and supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 3601-3608.
Xu, P.; Han, X. J.; Zhang, B.; Du, Y. C.; Wang, H. -L. Multifunctional polymer-metal nanocomposites via direct chemical reduction by conjugated polymers. Chem. Soc. Rev. 2014, 43, 1349-1360.
Xiao, L. F.; Cao, Y. L.; Henderson, W. A.; Sushko, M. L.; Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M. H.; Nie, Z. M.; Liu, J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016, 19, 279-288.
He, Y. Z.; Han, X. J.; Du, Y. C.; Zhang, B.; Xu, P. Heteroatom-doped carbon nanostructures derived from conjugated polymers for energy applications. Polymers 2016, 8, 366.
Liu, H.; Jia, M. Q.; Sun, N.; Cao, B.; Chen, R. J.; Zhu, Q. Z.; Wu, F.; Qiao, N.; Xu, B. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 27124-27130.
Zhang, Z. A.; Zhang, J.; Zhao, X. X.; Yang, F. H. Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries. Carbon 2015, 95, 552-559.
Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783-3787.
He, J. J.; To, J. W. F.; Psarras, P. C.; Yan, H. P.; Atkinson, T.; Holmes, R. T.; Nordlund, D.; Bao, Z. N.; Wilcox, J. Tunable polyaniline-based porous carbon with ultrahigh surface area for CO2 capture at elevated pressure. Adv. Energy Mater. 2016, 6, 1502491.
Kang, Z. P.; Jiao, K. L.; Peng, R. Y.; Hu, Z. Q.; Jiao, S. Q. Al-based porous coordination polymer derived nanoporous carbon for immobilization of glucose oxidase and its application in glucose/O2 biofuel cell and biosensor. RSC Adv. 2017, 7, 11872-11879.
Silvestre-Albero, A.; Silvestre-Albero, J.; Martínez-Escandell, M.; Rodríguez-Reinoso, F. Micro/mesoporous activated carbons derived from polyaniline: Promising candidates for CO2 adsorption. Ind. Eng. Chem. Res. 2014, 53, 15398-15405.
Inagaki, M.; Sakamoto, K. I.; Hishiyama, Y. Carbonization and graphitization of polyimide upilex. J. Mater. Res. 1991, 6, 1108-1113.
Yang, X. M.; Zhu, Z. X.; Dai, T. Y.; Lu, Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Comm. 2005, 26, 1736-1740.
Mi, H. Y.; Zhang, X. G.; Yang, S. D.; Ye, X. G.; Luo, J. M. Polyaniline nanofibers as the electrode material for supercapacitors. Mater. Chem. Phys. 2008, 112, 127-131.
Dubal, D. P.; Chodankar, N. R.; Caban-Huertas, Z.; Wolfart, F.; Vidotti, M.; Holze, R.; Lokhande, C. D.; Gomez-Romero, P. Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J. Power Sources 2016, 308, 158-165.
Tian, G. -L.; Zhang, Q.; Zhang, B. S.; Jin, Y. -G.; Huang, J. -Q.; Su, D. S.; Wei, F. Toward full exposure of "active sites": Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956-5961.
Langer, J. J.; Golczak, S. Highly carbonized polyaniline micro- and nanotubes. Polym. Degrad. Stabil. 2007, 92, 330-334.
Li, M. Y.; Carter, R.; Oakes, L.; Douglas, A.; Muralidharan, N.; Pint, C. L. Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries. J. Mater. Chem. A 2017, 5, 5266-5272.
Zhang, Z.; Wan, M.; Wei, Y. Highly crystalline polyaniline nanostructures doped with dicarboxylic acids. Adv. Funct. Mater. 2006, 16, 1100-1104.
Panomsuwan, G.; Saito, N.; Ishizaki, T. Simple one-step synthesis of fluorine-doped carbon nanoparticles as potential alternative metal-free electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 9972-9981.
Panchakarla, L. S.; Govindaraj, A.; Rao, C. N. R. Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 2007, 1, 494-500.
Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 2013, 6, 56-60.
Liu, H.; Jia, M. Q.; Cao, B.; Chen, R. J.; Lv, X. Y.; Tang, R. J.; Wu, F.; Xu, B. Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability. J. Power Sources 2016, 319, 195-201.
Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci. 2013, 6, 871-878.
Zhu, J. D.; Chen, C.; Lu, Y.; Ge, Y. Q.; Jiang, H.; Fu, K.; Zhang, X. W. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 2015, 94, 189-195.
Yan, J.; Wang, Q.; Lin, C. P.; Wei, T.; Fan, Z. J. Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 2014, 4, 1400500.
Xu, G. Y.; Han, J. P.; Ding, B.; Nie, P.; Pan, J.; Dou, H.; Li, H. S.; Zhang, X. G. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 2015, 17, 1668-1674.
Yang, C. P.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: A model system study. J. Am. Chem. Soc. 2015, 137, 2215-2218.
Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-764.
Sharifi, T.; Hu, G. Z.; Jia, X. E.; Wågberg, T. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 2012, 6, 8904-8912.
Xu, Z. X.; Zhuang, X. D.; Yang, C. Q.; Cao, J.; Yao, Z. Q.; Tang, Y. P.; Jiang, J. Z.; Wu, D. Q.; Feng, X. L. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 2016, 28, 1981-1987.
Pan, Z. Y.; Ren, J.; Guan, G. Z.; Fang, X.; Wang, B. J.; Doo, S. -G.; Son, I. H.; Huang, X. L.; Peng, H. S. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries. Adv. Energy Mater. 2016, 6, 1600271.
Li, D. D.; Chen, H. B.; Liu, G. X.; Wei, M.; Ding, L. -X.; Wang, S. Q.; Wang, H. H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 2015, 94, 888-894.
Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328-334.
Fu, L. J.; Tang, K.; Song, K. P.; van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384-1389.
Yang, F. H.; Zhang, Z. A.; Du, K.; Zhao, X. X.; Chen, W.; Lai, Y. Q.; Li, J. Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 2015, 91, 88-95.
Shin, W. H.; Jeong, H. M.; Kim, B. G.; Kang, J. K.; Choi, J. W. Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 2012, 12, 2283-2288.
Yan, D.; Yu, C. Y.; Zhang, X. J.; Qin, W.; Lu, T.; Hu, B. W.; Li, H. L.; Pan, L. K. Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochimi. Acta 2016, 191, 385-391.
Yan, D.; Xu, X. T.; Lu, T.; Hu, B. W.; Chua, D. H. C.; Pan, L. K. Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries. J. Power Sources 2016, 316, 132-138.
Li, S.; Qiu, J. X.; Lai, C.; Ling, M.; Zhao, H. J.; Zhang, S. Q. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224-230.
Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C. et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 7, 11004-11015.