Journal Home > Volume 11 , Issue 6

Solution processes have shown excellent potential for application to the growth of single-crystal materials. We have developed a confined-solution method for the preparation of single crystals with a controlled morphology. By confining the precursor solution within a micrometer-thick cavity and then controlling the saturation by adjusting the temperature gradient and fluid flow, high-quality CH3NH3PbBr3 single crystals with tunable morphologies could be obtained. The morphologies of the CH3NH3PbBr3 can be adjusted from sub-square centimeter-scale thin sheets that are square or rectangular, to one-dimensional wires with lengths in the order of centimeters, simply by changing the temperature. The thicknesses of the CH3NH3PbBr3 sheets could be adjusted from hundreds of nanometers to tens of microns. The CH3NH3PbBr3 sheets feature very clean surfaces with an atomic-scale roughness. This simple strategy provides a means of growing high-quality single crystals with clean surfaces, which realize high levels of performance when applied to devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Confined-solution process for high-quality CH3NH3PbBr3 single crystals with controllable morphologies

Show Author's information Yitan Li1,2Lu Han1Qiao Liu3Wei Wang4Yuguang Chen1Min Lyu1Xuemei Li5Hao Sun6Hao Wang3Shufeng Wang4Yan Li1,2( )
Key Laboratory for the Physics and Chemistry of NanodevicesBeijing National Laboratory of Molecular SciencesState Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
College of EngineeringPeking UniversityBeijing100871China
State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871China
Electron Microscopy LaboratoryPeking UniversityBeijing100871China
Bruker (Beijing) Scientific Technology Co., Ltd.Beijing100081China

Abstract

Solution processes have shown excellent potential for application to the growth of single-crystal materials. We have developed a confined-solution method for the preparation of single crystals with a controlled morphology. By confining the precursor solution within a micrometer-thick cavity and then controlling the saturation by adjusting the temperature gradient and fluid flow, high-quality CH3NH3PbBr3 single crystals with tunable morphologies could be obtained. The morphologies of the CH3NH3PbBr3 can be adjusted from sub-square centimeter-scale thin sheets that are square or rectangular, to one-dimensional wires with lengths in the order of centimeters, simply by changing the temperature. The thicknesses of the CH3NH3PbBr3 sheets could be adjusted from hundreds of nanometers to tens of microns. The CH3NH3PbBr3 sheets feature very clean surfaces with an atomic-scale roughness. This simple strategy provides a means of growing high-quality single crystals with clean surfaces, which realize high levels of performance when applied to devices.

Keywords: perovskite, single crystal, confined solution process, atomic-scale flatness

References(47)

1

Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

2

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

3

Schütze, M. High-temperature alloys: Single-crystal performance boost. Nat. Mater. 2016, 15, 823–824.

4

Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.; Chen, L.; Ye, J. A sub-40-mhz- linewidth laser based on a silicon single-crystal optical cavity. Nat. Photonics 2012, 6, 687–692.

5

Duan, X. F.; Lieber, C. M. Laser-assisted catalytic growth of single crystal gan nanowires. J. Am. Chem. Soc. 2000, 122, 188–189.

6

Khang, D. -Y.; Jiang, H.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

7

Li, H. Y.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. N. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 2012, 134, 2760–2765.

8

Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. Patterning organic single-crystal transistor arrays. Nature 2006, 444, 913–917.

9

Craighead, H. G. Nanoelectromechanical systems. Science 2000, 290, 1532–1535.

10

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

11

Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

12

Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014, 26, 1584–1589.

13

Ponseca Jr, C. S.; Savenije, T. J.; Abdellah, M.; Zheng, K. B.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A. et al. Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014, 136, 5189–5192.

14

Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 2015, 349, 1518–1521.

15

Xing, G. C.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X. F.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Low- temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476–480.

16

Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.

17

McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155.

18

Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630.

19

Jung, H. S.; Park, N. G. Perovskite solar cells: From materials to devices. Small 2015, 11, 10–25.

20

Li, X.; Bi, D.; Yi, C.; Décoppet, J. -D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353, 58–62.

21

Chen, Q.; Zhou, H. P.; Hong, Z. R.; Luo, S.; Duan, H. -S.; Wang, H. -H.; Liu, Y. S.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2013, 136, 622–625.

22

Wang, Q.; Shao, Y. C.; Dong, Q. F.; Xiao, Z. G.; Yuan, Y. B.; Huang, J. S. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 2014, 7, 2359–2365.

23

Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J. -C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

24

Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. -B.; Duan, H. -S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

25

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

26

Tan, H.; Jain, A.; Voznyy, O.; Lan, X. Z.; de Arquer, F. P. G.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.

27

Erdemir, D.; Lee, A. Y.; Myerson, A. S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 2009, 42, 621–629.

28

Bunn, C. W. Crystal growth from solution. Ⅱ. Concentration gradients and the rates of growth of crystals. Discuss. Faraday Soc. 1949, 5, 132–144.

29

Pimpinelli, A.; Villain, J. Physics of Crystal Growth; Cambridge University Press: Cambridge, 1998.

DOI
30

Burschka, J.; Pellet, N.; Moon, S. -J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

31

Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

32

Im, J. -H.; Lee, C. -R.; Lee, J. -W.; Park, S. -W.; Park, N. -G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

33

Yang, Y.; Yan, Y.; Yang, M. J.; Choi, S.; Zhu, K.; Luther, J. M.; Beard, M. C. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 2015, 6, 7961.

34

Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L. F.; He, Y.; Maculan, G. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.

35

Peng, W.; Wang, L. F.; Murali, B.; Ho, K. T.; Bera, A.; Cho, N.; Kang, C. F.; Burlakov, V. M.; Pan, J.; Sinatra, L. et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 2016, 28, 3383–3390.

36

Thomson, W. On the equilibrium of vapour at a curved surface of liquid. Proc. R. Soc. Edinburgh 1870, 7, 63–68.

37

Thomson, W. LX. On the equilibrium of vapour at a curved surface of liquid. Proc. R. Soc. Edinburgh, 1871, 42, 448–452.

38

Hu, H.; Larson, R. G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. C 2006, 110, 7090–7094.

39

Xu, X. F.; Luo, J. B. Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 2007, 91, 124102.

40

Authier, A.; Benz, K. W.; Robert, M. C.; Wallrafen, F. Crystal growth from solutions. In Fluid Sciences and Materials Science in Space; Walter, H. U., Ed.; Springer: Berlin, Heidelberg, 1987; pp 405–449.

41

Zhao, P. J.; Xu, J. B.; Dong, X. Y.; Wang, L.; Ren, W.; Bian, L.; Chang, A. M. Large-size CH3NH3PbBr3 single crystal: Growth and in situ characterization of the photophysics properties. J. Phys. Chem. Lett. 2015, 6, 2622–2628.

42

Chen, Y.; He, M.; Peng, J.; Sun, Y.; Liang, Z. Structure and growth control of organic–inorganic halide perovskites for optoelectronics: From polycrystalline films to single crystals. Adv. Sci. 2016, 3, 1500392.

43

Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.

44

Saidaminov, M. I.; Adinolfi, V.; Comin, R.; Abdelhady, A. L.; Peng, W.; Dursun, I.; Yuan, M. J.; Hoogland, S.; Sargent, E. H.; Bakr, O. M. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 2015, 6, 8724.

45

De Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683–686.

46

Pazos-Outón, L. M.; Szumilo, M.; Lamboll, R.; Richter, J. M.; Crespo-Quesada, M.; Abdi-Jalebi, M.; Beeson, H. J.; Vrućinić, M.; Alsari, M.; Snaith, H. J. et al. Photon recycling in lead iodide perovskite solar cells. Science 2016, 351, 1430–1433.

47

Pérez-del-Rey, D.; Forgács, D.; Hutter, E. M.; Savenije, T. J.; Nordlund, D.; Schulz, P.; Berry, J. J.; Sessolo, M.; Bolink, H. J. Strontium insertion in methylammonium lead iodide: Long charge carrier lifetime and high fill-factor solar cells. Adv. Mater. 2016, 28, 9839–9845.

File
12274_2017_1875_MOESM1_ESM.pdf (934.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2017
Revised: 29 September 2017
Accepted: 01 October 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This research is financially supported by the National Key Research and Development Program of China (No. 2016YFA0201904) and National Natural Science Foundation of China (Nos. 21631002, U1632119, and 21621061).

Return