Journal Home > Volume 11 , Issue 5

Currently, the biosynthesis of nanomaterials by organisms is attracting considerable attention because of the sustainable and environmentally friendly nature of the reactions involved in this process compared with those in the conventional nanomaterial synthesis. However, the manipulation and control of nanomaterial biosynthesis remain difficult because of the lack of knowledge about the biosynthetic mechanisms. In the present study, we elucidated the selenium (Se)-precursor and Se metabolic flux in the biosynthesis of cadmium-selenium quantum dots (CdSe QDs) in Saccharomyces cerevisiae and improved the cells' ability to biosynthesize CdSe QDs through gene modification based on the regulation mechanism. By deleting the genes involved in Se metabolism and measuring seleno-amino acids, we identified selenocysteine (SeCys) as the primary Se-precursor in the intracellular biosynthesis of CdSe QDs. Further studies demonstrated that the selenomethionine (SeMet)-to-SeCys pathway regulates CdSe QD biosynthesis. Knowledge of the regulatory pathway allowed us to enhance SeMet synthesis by overexpression of the MET6 gene, and an increased CdSe QD yield was realized in the engineered cells. Understanding the mechanism of CdSe QD biosynthesis helped to determine the relationship between nanocrystal formation and biological processes, and offers a new perspective to manipulation of nanomaterial biosynthesis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Living cell synthesis of CdSe quantum dots: Manipulation based on the transformation mechanism of intracellular Se-precursors

Show Author's information Ming Shao1Rong Zhang1Chuan Wang2Bin Hu2Daiwen Pang2Zhixiong Xie1( )
Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesKey Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)Wuhan UniversityWuhan430072China
Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China

Abstract

Currently, the biosynthesis of nanomaterials by organisms is attracting considerable attention because of the sustainable and environmentally friendly nature of the reactions involved in this process compared with those in the conventional nanomaterial synthesis. However, the manipulation and control of nanomaterial biosynthesis remain difficult because of the lack of knowledge about the biosynthetic mechanisms. In the present study, we elucidated the selenium (Se)-precursor and Se metabolic flux in the biosynthesis of cadmium-selenium quantum dots (CdSe QDs) in Saccharomyces cerevisiae and improved the cells' ability to biosynthesize CdSe QDs through gene modification based on the regulation mechanism. By deleting the genes involved in Se metabolism and measuring seleno-amino acids, we identified selenocysteine (SeCys) as the primary Se-precursor in the intracellular biosynthesis of CdSe QDs. Further studies demonstrated that the selenomethionine (SeMet)-to-SeCys pathway regulates CdSe QD biosynthesis. Knowledge of the regulatory pathway allowed us to enhance SeMet synthesis by overexpression of the MET6 gene, and an increased CdSe QD yield was realized in the engineered cells. Understanding the mechanism of CdSe QD biosynthesis helped to determine the relationship between nanocrystal formation and biological processes, and offers a new perspective to manipulation of nanomaterial biosynthesis.

Keywords: mechanism, biosynthesis, cadmium-selenium quantum dots (CdSe QDs), selenium metabolism, yeast

References(44)

1

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

2

Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 2003, 36, 167–181.

3

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

4

Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.

5

Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc. 2005, 127, 9374–9375.

6

Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

7

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

8

Nann, T.; Skinner, W. M. Quantum dots for electro-optic devices. ACS Nano 2011, 5, 5291–5295.

9

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

10

Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

11

Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Toward greener nanosynthesis. Chem. Rev. 2007, 107, 2228–2269.

12

Crookes-Goodson, W. J.; Slocik, J. M.; Naik, R. R. Bio-directed synthesis and assembly of nanomaterials. Chem. Soc. Rev. 2008, 37, 2403–2412.

13

Park, T. J.; Lee, S. Y.; Heo, N. S.; Seo, T. S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew. Chem., Int. Ed. 2010, 49, 7019–7024.

14

Siponen, M. I.; Legrand, P.; Widdrat, M.; Jones, S. R.; Zhang, W. J.; Chang, M. C. Y.; Faivre, D.; Arnoux, P.; Pignol, D. Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 2013, 502, 681–684.

15

Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1989, 338, 596–597.

16

Cui, R.; Liu, H. H.; Xie, H. Y.; Zhang, Z. L.; Yang, Y. R.; Pang, D. W.; Xie, Z. X.; Chen, B. B.; Hu, B.; Shen, P. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv. Funct. Mater. 2009, 19, 2359–2364.

17

Bao, H. F.; Hao, N.; Yang, Y. X.; Zhao, D. Y. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 2010, 3, 481–489.

18

Uetz, P.; Giot, L.; Cagney, G.; Mansfield, T. A.; Judson, R. S.; Knight, J. R.; Lockshon, D.; Narayan, V.; Srinivasan, M.; Pochart, P. et al. A comprehensive analysis of proteinprotein interactions in Saccharomyces cerevisiae. Nature 2000, 403, 623–627.

19

Du, T. Y.; Zhao, C. Q.; ur Rehman, F.; Lai, L. M.; Li, X. Q.; Sun, Y.; Luo, S. H.; Jiang, H.; Selke, M.; Wang, X. M. Rapid and multimodal in vivo bioimaging of cancer cells through in situ biosynthesis of Zn&Fe nanoclusters. Nano Res. 2017, 10, 2626–2632.

20

Li, Y.; Cui, R.; Zhang, P.; Chen, B. B.; Tian, Z. Q.; Li, L.; Hu, B.; Pang, D. W.; Xie, Z. X. Mechanism-oriented controllability of intracellular quantum dots formation: The role of glutathione metabolic pathway. ACS Nano 2013, 7, 2240–2248.

21

Xiong, L. H.; Cui, R.; Zhang, Z. L.; Yu, X.; Xie, Z. X.; Shi, Y. B.; Pang, D. W. Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano 2014, 8, 5116–5124.

22

Cui, R.; Zhang, M. X.; Tian, Z. Q.; Zhang, Z. L.; Pang, D. W. Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system. Nanoscale 2010, 2, 2120–2125.

23

Zhang, M. X.; Cui, R.; Tian, Z. Q.; Zhang, Z. L.; Pang, D. W. Kinetics-controlled formation of gold clusters using a quasi-biological system. Adv. Funct. Mater. 2010, 20, 3673–3677.

24

Zhang, M. X.; Cui, R.; Zhao, J. Y.; Zhang, Z. L.; Pang, D. W. Synthesis of sub-5 nm Au-Ag alloy nanoparticles using bio-reducing agent in aqueous solution. J. Mater. Chem. 2011, 21, 17080–17082.

25

Cui, R.; Gu, Y. P.; Zhang, Z. L.; Xie, Z. X.; Tian, Z. Q.; Pang, D. W. Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem. J. Mater. Chem. 2012, 22, 3713–3716.

26

Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.

27

Xiong, L. H.; Cui, R.; Zhang, Z. L.; Tu, J. W.; Shi, Y. B.; Pang, D. W. Harnessing intracellular biochemical pathways for in vitro synthesis of designer tellurium nanorods. Small 2015, 11, 5416–5422.

28

Eisenstein, M. Bacteria find work as amateur chemists. Nat. Methods 2005, 2, 6–7.

29

Zhang, R.; Shao, M.; Han, X.; Wang, C.; Li, Y.; Hu, B.; Pang, D. W.; Xie, Z. X. Atp synthesis in the energy metabolism pathway: A new perspective for manipulating cdse quantum dots biosynthesized in Saccharomyces cerevisiae. Int. J. Nanomed. 2017, 12, 3865–3879.

30

Longtine, M. S.; McKenzie, A. III; Demarini, D. J.; Shah, N. G.; Wach, A.; Brachat, A.; Philippsen, P.; Pringle, J. R. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998, 14, 953–961.

DOI
31

Wu, S. M.; Su, Y. L.; Liang, R. R.; Ai, X. X.; Qian, J.; Wang, C.; Chen, J. Q.; Yan, Z. Y. Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae. RSC Adv. 2015, 5, 79184–79191.

32

Bird, S. M.; Uden, P. C.; Tyson, J. F.; Block, E.; Denoyer, E. Speciation of selenoamino acids and organoselenium compounds in selenium-enriched yeast using high-performance liquid chromatography inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1997, 12, 785–788.

33

Sun, Q.; Yang, S. H.; Wu, L.; Dong, Q. J.; Yang, W. C.; Yang, G. F. Detection of intracellular selenol-containing molecules using a fluorescent probe with near-zero background signal. Anal. Chem. 2016, 88, 6084–6091.

34

Schmitt, M. E.; Brown, T. A.; Trumpower, B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990, 18, 3091–3092.

35

Zhu, Z. J.; Yeh, Y. C.; Tang, R.; Yan, B.; Tamayo, J.; Vachet, R. W.; Rotello, V. M. Stability of quantum dots in live cells. Nat. Chem. 2011, 3, 963–968.

36

Schrauzer, G. N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000, 130, 1653–1656.

37

Uden, P. C. Modern trends in the speciation of selenium by hyphenated techniques. Anal. Bioanal. Chem. 2002, 373, 422–431.

38

Schrauzer, G. N. The nutritional significance, metabolism and toxicology of selenomethionine. Adv. Food. Nutr. Res. 2003, 47, 73–112.

39

Thomas, D.; Surdin-Kerjan, Y. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 1997, 61, 503–532.

40

Rao, Y. L.; McCooeye, M.; Windust, A.; Bramanti, E.; D'Ulivo, A.; Mester, Z. Mapping of selenium metabolic pathway in yeast by liquid chromatography-orbitrap mass spectrometry. Anal. Chem. 2010, 82, 8121–8130.

41

Lazard, M.; Dauplais, M.; Blanquet, S.; Plateau, P. Transsulfuration pathway seleno-amino acids are mediators of selenomethionine toxicity in Saccharomyces cerevisiae. J. Biol. Chem. 2015, 290, 10741–10750.

42

Lee, T. I.; Rinaldi, N. J.; Robert, F.; Odom, D. T.; Bar-Joseph, Z.; Gerber, G. K.; Hannett, N. M.; Harbison, C. T.; Thompson, C. M.; Simon, I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002, 298, 799–804.

43

Becskei, A.; Serrano, L. Engineering stability in gene networks by autoregulation. Nature 2000, 405, 590–593.

44

Birringer, M.; Pilawa, S.; Flohé, L. Trends in selenium biochemistry. Nat. Prod. Rep. 2002, 19, 693–718.

File
12274_2017_1873_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2017
Revised: 06 October 2017
Accepted: 07 October 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21272182 and 31570090) and the National Basic Research Program of China (973 Program) (No. 2013CB933904). This project is partially supported by the Chinese 111 Project (No. B06018), the National Infrastructure of Natural Resources for Science and Technology Program of China (No. NIMR-2017-8), the National Fund for Fostering Talents in Basic Sciences (No. J1103513), and the Laboratory (Innovative) Research Fund of Wuhan University. We are grateful to Prof. Yang Wenchao for his generous gift of Probe 3.

Return