Journal Home > Volume 11 , Issue 5

The greenhouse effect and global warming are serious problems because the increasing global demand for fossil fuels has led to a rapid rise in greenhouse gas exhaust emissions in the atmosphere and disruptive changes in climate. As a major contributor, CO2 has attracted much attention from scientists, who have attempted to convert it into useful products by electrochemical or photoelectrochemical reduction methods. Facile design of efficient but inexpensive and abundant catalysts to convert CO2 into fuels or valuable chemical products is essential for materials chemistry and catalysis in addressing global climate change as well as the energy crisis. Herein, we show that two-dimensional fewlayer graphitic carbon nitride (g-C3N4) can function as an efficient metal-free electrocatalyst for selective reduction of CO2 to CO at low overpotentials with a high Faradaic efficiency of ~ 80%. The polarized surface of ultrathin g-C3N4 layers (thickness: ~ 1 nm), with a more reductive conduction band, yields excellent electrochemical activity for CO2 reduction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2

Show Author's information Bing ZhangTian-Jian ZhaoWei-Jie FengYong-Xing LiuHong-Hui WangHui SuLi-Bing LvXin-Hao Li( )Jie-Sheng Chen( )
School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China

Abstract

The greenhouse effect and global warming are serious problems because the increasing global demand for fossil fuels has led to a rapid rise in greenhouse gas exhaust emissions in the atmosphere and disruptive changes in climate. As a major contributor, CO2 has attracted much attention from scientists, who have attempted to convert it into useful products by electrochemical or photoelectrochemical reduction methods. Facile design of efficient but inexpensive and abundant catalysts to convert CO2 into fuels or valuable chemical products is essential for materials chemistry and catalysis in addressing global climate change as well as the energy crisis. Herein, we show that two-dimensional fewlayer graphitic carbon nitride (g-C3N4) can function as an efficient metal-free electrocatalyst for selective reduction of CO2 to CO at low overpotentials with a high Faradaic efficiency of ~ 80%. The polarized surface of ultrathin g-C3N4 layers (thickness: ~ 1 nm), with a more reductive conduction band, yields excellent electrochemical activity for CO2 reduction.

Keywords: two-dimensional (2D) materials, nanostructures, CO2 reduction, electrochemistry, metal-free electrocatalyst

References(44)

1

Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. S. Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 778–781.

2

Pan, Y. -X.; Sun, Z. -Q.; Cong, H. -P.; Men, Y. -L.; Xin, S.; Song, J.; Yu, S. -H. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 2016, 9, 1689–1700.

3

Wang, C. M.; Luo, X. Y.; Luo, H. M.; Jiang, D. -E.; Li, H. R.; Dai, S. Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew. Chem., Int. Ed. 2011, 50, 4918–4922.

4

Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2016, 55, 698–702.

5

Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

6

Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112–3135.

7

Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A. -R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J. -P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.

8

Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 2014, 136, 7845–7848.

9

White, J. L.; Baruch, M. F.; Pander Ⅲ, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

10

Zhu, Q. G.; Ma, J.; Kang, X. C.; Sun, X. F.; Liu, H. Z.; Hu, J. Y.; Liu, Z. M.; Han, B. X. Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem., Int. Ed. 2016, 128, 9158– 9162.

11

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

12

Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 2013, 4, 2819.

13

Sato, S.; Morikawa, T.; Saeki, S.; Kajino, T.; Motohiro, T. Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew. Chem., Int. Ed. 2010, 49, 5101–5105.

14

Ge, J. -M.; Zhang, B.; Lv, L. -B.; Wang, H. -H.; Ye, T. -N.; Wei, X.; Su, J.; Wang, K. -X.; Li, X. -H.; Chen, J. -S. Constructing holey graphene monoliths via supramolecular assembly: Enriching nitrogen heteroatoms up to the theoretical limit for hydrogen evolution reaction. Nano Energy 2015, 15, 567–575.

15

Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334, 643–644.

16

Mahurin, S. M.; Fulvio, P. F.; Hillesheim, P. C.; Nelson, K. M.; Veith, G. M.; Dai, S. Directed synthesis of nanoporous carbons from task-specific ionic liquid precursors for the adsorption of CO2. ChemSusChem 2014, 7, 3284–3289.

17

Zhang, B.; Wang, H. -H.; Su, H.; Lv, L. -B.; Zhao, T. -J.; Ge, J. -M.; Wei, X.; Wang, K. -X.; Li, X. -H.; Chen, J. -S. Nitrogen-doped graphene microtubes with opened inner voids: Highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 2606–2615.

18

Goettmann, F.; Thomas, A.; Antonietti, M. Metal-free activation of CO2 by mesoporous graphitic carbon nitride. Angew. Chem., Int. Ed. 2007, 46, 2717–2720.

19

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

20

Han, Q.; Wang, B.; Zhao, Y.; Hu, C. G.; Qu, L. T. A graphitic-C3N4 "seaweed" architecture for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11433–11437.

21

Li, X. -H.; Chen, J. -S.; Wang, X. C.; Sun, J. H.; Antonietti, M. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: Functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc. 2011, 133, 8074–8077.

22

Cai, Y. Y.; Li, X. H.; Zhang, Y. N.; Wei, X.; Wang, K. X.; Chen, J. S. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott–Schottky photocatalyst. Angew. Chem., Int. Ed. 2013, 52, 11822–11825.

23

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.

24

Liang, Q. H.; Li, Z.; Bai, Y.; Huang, Z. -H.; Kang, F. Y.; Yang, Q. -H. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci. China Mater. 2017, 60, 109–118.

25

Zhou, Z. X.; Wang, J. H.; Yu, J. C.; Shen, Y. F.; Li, Y.; Liu, A. R.; Liu, S. Q.; Zhang, Y. J. Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J. Am. Chem. Soc. 2015, 137, 2179–2182.

26

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

27

Fang, Y. X.; Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399–3405.

28

Nganga, J. K.; Samanamu, C. R.; Tanski, J. M.; Pacheco, C.; Saucedo, C.; Batista, V. S.; Grice, K. A.; Ertem, M. Z.; Angeles-Boza, A. M. Electrochemical reduction of CO2 catalyzed by Re(pyridine-oxazoline)(CO)3Cl complexes. Inorg. Chem. 2017, 56, 3214–3226.

29

Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.

30

Wu, J. J.; Yadav, R. M.; Liu, M. J.; Sharma, P. P.; Tiwary, C. S.; Ma, L. L.; Zou, X. L.; Zhou, X. -D.; Yakobson, B. I.; Lou, J. et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 2015, 9, 5364–5371.

31

Xu, J. Y.; Kan, Y. H.; Huang, R.; Zhang, B. S.; Wang, B. L.; Wu, K. -H.; Lin, Y. M.; Sun, X. Y.; Li, Q. F.; Centi, G. et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem 2016, 9, 1085–1089.

32

Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

33

Li, X. -H.; Wang, X. C.; Antonietti, M. Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: Nanostructure boosts the catalytic selectivity. ACS Catal. 2012, 2, 2082–2086.

34

Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680–1681.

35

Li, Q.; Yang, J. P.; Feng, D.; Wu, Z. X.; Wu, Q. L.; Park, S. S.; Ha, C. -S.; Zhao, D. Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 2010, 3, 632–642.

36

Li, X. C.; Wu, M.; Lai, Z. H.; He, F. Studies on nickel-based catalysts for carbon dioxide reforming of methane. Appl. Catal. A: Gen. 2005, 290, 81–86.

37

Doyle, A. M.; Shaikhutdinov, S. K.; Jackson, S. D.; Freund, H. -J. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals? Angew. Chem., Int. Ed. 2003, 42, 5240–5243.

38

Zhang, J. S.; Zhang, M. W.; Yang, C.; Wang, X. C. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 2014, 26, 4121–4126.

39

Yu, H. J.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G. I. N.; Zhao, Y. F.; Zhou, C.; Wu, L. -Z.; Tung, C. -H.; Zhang, T. Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 2016, 28, 5080–5086.

40

Li, Y. G.; Zhang, J.; Wang, Q. S.; Jin, Y. X.; Huang, D. H.; Cui, Q. L.; Zou, G. T. Nitrogen-rich carbon nitride hollow vessels: Synthesis, characterization, and their properties. J. Phys. Chem. B 2010, 114, 9429–9434.

41

Lei, W. W.; Portehault, D.; Dimova, R.; Antonietti, M. Boron carbon nitride nanostructures from salt melts: Tunable water-soluble phosphors. J. Am. Chem. Soc. 2011, 133, 7121–7127.

42

Bandi, A.; Kühne, H. M. Electrochemical reduction of carbon dioxide in water: Analysis of reaction mechanism on ruthenium-titanium-oxide. J. Electrochem. Soc. 1992, 139, 1605–1610.

43

Eastwood, B. J.; Christensen, P. A.; Armstrong, R. D.; Bates, N. R. Electrochemical oxidation of a carbon black loaded polymer electrode in aqueous electrolytes. J. Solid State Electrochem. 1999, 3, 179–186.

44

Tammeveski, K.; Arulepp, M.; Tenno, T.; Ferrater, C.; Claret, J. Oxygen electroreduction on titanium-supported thin Pt films in alkaline solution. Electrochim. Acta 1997, 42, 2961–2967.

Video
12274_2017_1866_MOESM2_ESM.avi
File
12274_2017_1866_MOESM1_ESM.pdf (5.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 July 2017
Revised: 21 September 2017
Accepted: 22 September 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21331004, 21673140, and 21671134), Innovation Program of Shanghai Science and Technology Committee (No. 16JC1401600), Shanghai Eastern Scholar Program, Shanghai Rising-Star Program (No. 16QA1402100) and SJTU-MPI partner group.

Return