Journal Home > Volume 11 , Issue 5

Theranostic nanoagents that integrate the diagnoses and therapies within a single nanomaterial are compelling in their use for highly precise and efficient antitumor treatments. Herein, polyethylene glycol (PEG)-modified cobalt sulfide nanosheets (CoS-PEG NSs) are synthesized and unitized as a powerful theranostic nanoagent for efficient photothermal conversion and multimodal imaging for the first time. We demonstrate that the obtained CoS-PEG NSs show excellent compatibility and stability in water and various physiological solutions, and can be effectively internalized by cells, but exhibit a low cytotoxicity. The CoS-PEG NSs exhibit an efficient photothermal conversion capacity, benefited from the strong near-infrared (NIR) absorption, high photothermal conversion efficiency (~33.0%), and excellent photothermal stability. Importantly, the highly effective photothermal killing effect on cancer cells after exposure to CoS-PEG NSs plus laser irradiation has been confirmed by both the standard Cell Counting Kit-8 and live-dead cell staining assays, revealing a concentration-dependent photothermal therapeutic effect. Moreover, utilizing the strong NIR absorbance together with the T2-MR contrast ability of the CoS-PEG NSs, a high-contrast triple-modal imaging, i.e., photoacoustic (PA), infrared thermal (IRT), and magnetic resonance (MR) imaging, can be achieved, suggesting a great potential for multimodal imaging to provide comprehensive cancer diagnosis. Our work introduces the first bioapplication of the CoS-PEG nanomaterial as a potential theranostic nanoplatform and may promote further rational design of CoS-based nanostructures for precise/efficient cancer diagnosis and therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polyethylene glycol-modified cobalt sulfide nanosheets for high-performance photothermal conversion and photoacoustic/magnetic resonance imaging

Show Author's information Zhenglin Li1,2,3Zhuo Li1Lei Chen4Ying Hu5Shaoshan Hu4Zhaohua Miao6Ye Sun2( )Flemming Besenbacher3( )Miao Yu1( )
State Key Laboratory of Urban Water Resource and EnvironmentSchool of Chemical Engineering and TechnologyHarbin Institute of TechnologyHarbin150001China
Condensed Matter Science and Technology InstituteHarbin Institute of TechnologyHarbin150001China
Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and AstronomyAarhus UniversityAarhus8000Denmark
Department of Neurological SurgeryThe Second Affiliated Hospital of the Harbin Medical UniversityHarbin150001China
School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150001China
School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China

Abstract

Theranostic nanoagents that integrate the diagnoses and therapies within a single nanomaterial are compelling in their use for highly precise and efficient antitumor treatments. Herein, polyethylene glycol (PEG)-modified cobalt sulfide nanosheets (CoS-PEG NSs) are synthesized and unitized as a powerful theranostic nanoagent for efficient photothermal conversion and multimodal imaging for the first time. We demonstrate that the obtained CoS-PEG NSs show excellent compatibility and stability in water and various physiological solutions, and can be effectively internalized by cells, but exhibit a low cytotoxicity. The CoS-PEG NSs exhibit an efficient photothermal conversion capacity, benefited from the strong near-infrared (NIR) absorption, high photothermal conversion efficiency (~33.0%), and excellent photothermal stability. Importantly, the highly effective photothermal killing effect on cancer cells after exposure to CoS-PEG NSs plus laser irradiation has been confirmed by both the standard Cell Counting Kit-8 and live-dead cell staining assays, revealing a concentration-dependent photothermal therapeutic effect. Moreover, utilizing the strong NIR absorbance together with the T2-MR contrast ability of the CoS-PEG NSs, a high-contrast triple-modal imaging, i.e., photoacoustic (PA), infrared thermal (IRT), and magnetic resonance (MR) imaging, can be achieved, suggesting a great potential for multimodal imaging to provide comprehensive cancer diagnosis. Our work introduces the first bioapplication of the CoS-PEG nanomaterial as a potential theranostic nanoplatform and may promote further rational design of CoS-based nanostructures for precise/efficient cancer diagnosis and therapy.

Keywords: magnetic resonance imaging, photoacoustic imaging, photothermal therapy, theranostic agent, cobalt sulfide nanosheets

References(42)

1

Ou, G.; Li, Z. W.; Li, D. K.; Cheng, L.; Liu, Z.; Wu, H. Photothermal therapy by using titanium oxide nanoparticles. Nano Res. 2016, 9, 1236–1243.

2

Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA-Cancer J. Clin. 2013, 63, 11–30.

3

Zhu, C. Q.; Yang, Y. H.; Luo, M.; Yang, C. X.; Wu, J. J.; Chen, L. N.; Liu, G.; Wen, T. B.; Zhu, J.; Xia, H. P. Stabilizing two classical antiaromatic frameworks: Demonstration of photoacoustic imaging and the photothermal effect in metalla-aromatics. Angew. Chem., Int. Ed. 2015, 127, 6279–6283.

4

Yang, K.; Hu, L. L.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Shi, X. Z.; Li, C. H.; Li, Y. G.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24, 1868–1872.

5

Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

6

Zhao, Z. X.; Shi, S. G.; Huang, Y. H.; Tang, S. H.; Chen, X. L. Simultaneous photodynamic and photothermal therapy using photosensitizer-functionalized Pd nanosheets by single continuous wave laser. ACS Appl. Mater. Interfaces 2014, 6, 8878–8885.

7

Zhang, Z. J.; Wang, L. M.; Wang, J.; Jiang, X. M.; Li, X. H.; Hu, Z. J.; Ji, Y. L.; Wu, X. C.; Chen, C. Y. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 2012, 24, 1418–1423.

8

Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

9

Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

10

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

11

Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 125, 4254–4258.

12

Li, Z. L.; Liu, J.; Hu, Y.; Howard, K. A.; Li, Z.; Fan, X. L.; Chang, M. L.; Sun, Y.; Besenbacher, F.; Chen, C. Y. et al. Multimodal imaging-guided antitumor photothermal therapy and drug delivery using bismuth selenide spherical sponge. ACS Nano 2016, 10, 9646–9658.

13

Li, Z. L.; Hu, Y.; Chang, M. L.; Howard, K. A.; Fan, X. L.; Sun, Y.; Besenbacher, F.; Yu, M. Highly porous PEGylated Bi2S3 nano-urchins as a versatile platform for in vivo triple-modal imaging, photothermal therapy and drug delivery. Nanoscale 2016, 8, 16005–16016.

14

Li, Z. L.; Hu, Y.; Howard, K. A.; Jiang, T. T.; Fan, X. L.; Miao, Z. H.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional bismuth selenide nanocomposites for antitumor thermo-chemotherapy and imaging. ACS Nano 2016, 10, 984–997.

15

Zhang, C.; Fu, Y. Y.; Zhang, X. J.; Yu, C. S.; Zhao, Y.; Sun, S. K. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Dalton T. 2015, 44, 13112–13118.

16

Yang, T.; Wang, Y.; Ke, H. T.; Wang, Q. L.; Lv, X. Y.; Wu, H.; Tang, Y. A.; Yang, X. L.; Chen, C. Y.; Zhao, Y. L. et al. Protein-nanoreactor-assisted synthesis of semiconductor nanocrystals for efficient cancer theranostics. Adv. Mater. 2016, 28, 5923–5930.

17

Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

18

Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

19

Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliver. Rev. 2010, 62, 1052–1063.

20

Yang, K.; Yang, G. B.; Chen, L.; Cheng, L.; Wang, L.; Ge, C. C.; Liu, Z. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 2015, 38, 1–9.

21

Zhang, Z. J.; Wang, J.; Chen, C. Y. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 2013, 25, 3869–3880.

22

Wang, L. R.; Zhu, X. L.; Tang, X. Y.; Wu, C. Q.; Zhou, Z. J.; Sun, C. J.; Deng, S. L.; Ai, H.; Gao, J. H. A multiple gadolinium complex decorated fullerene as a highly sensitive T1 contrast agent. Chem. Commun. 2015, 51, 4390–4393.

23

Rieke, V.; Butts Pauly, K. MR thermometry. J. Magn. Reson. Imaging 2008, 27, 376–390.

24

Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577.

25

Fu, G. L.; Liu, W.; Li, Y. Y.; Jin, Y. S.; Jiang, L. D.; Liang, X. L.; Feng, S. S.; Dai, Z. F. Magnetic prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjugate Chem. 2014, 25, 1655–1663.

26

Song, G. S.; Liang, C.; Gong, H.; Li, M. F.; Zheng, X. C.; Cheng, L.; Yang, K.; Jiang, X. Q.; Liu, Z. Core-shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 2015, 27, 6110–6117.

27

Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.

28

Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Deliver. Rev. 2010, 62, 1064–1079.

29

Menon, J. U.; Jadeja, P.; Tambe, P.; Vu, K.; Yuan, B. H.; Nguyen, K. T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 2013, 3, 152–166.

30

Parkes, L. M.; Hodgson, R.; Lu, L. T.; Tung, L. D.; Robinson, I.; Fernig, D. G.; Thanh, N. T. K. Cobalt nanoparticles as a novel magnetic resonance contrast agent-relaxivities at 1.5 and 3 Tesla. Contrast Media Mol. I. 2008, 3, 150–156.

31

Li, B.; Yuan, F. K.; He, G. J.; Han, X. Y.; Wang, X.; Qin, J. B.; Guo, Z. X.; Lu, X. W.; Wang, Q.; Parkin, I. P. et al. Ultrasmall CuCo2S4 nanocrystals: All-in-one theragnosis nanoplatform with magnetic resonance/near-infrared imaging for efficiently photothermal therapy of tumors. Adv. Funct. Mater. 2017, 27, 1606218.

32

Huang, X. J.; Deng, G. Y.; Liao, L. J.; Zhang, W. L.; Guan, G. Q.; Zhou, F.; Xiao, Z. Y.; Zou, R. J.; Wang, Q.; Hu, J. Q. CuCo2S4 nanocrystals: A new platform for multimodal imaging guided photothermal therapy. Nanoscale 2017, 9, 2626–2632.

33

Yang, Z. S.; Chen, C. Y.; Chang, H. T. Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 2011, 196, 7874–7877.

34

Sun, L.; Lin, Z.; Peng, J.; Weng, J.; Huang, Y.; Luo, Z. Preparation of few-layer bismuth selenide by liquid-phase-exfoliation and its optical absorption properties. Sci. Rep. 2014, 4, 4794.

35

Li, Z. L.; Zeng, Y. Y.; Zhang, D.; Wu, M.; Wu, L. J.; Huang, A. M.; Yang, H. H.; Liu, X. L.; Liu, J. F. Glypican-3 antibody functionalized prussian blue nanoparticles for targeted MR imaging and photothermal therapy of hepatocellular carcinoma. J. Mater. Chem. B 2014, 2, 3686–3696.

36

Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

37

Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560–2566.

38

Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.

39

Chen, J. Q.; Liu, C. B.; Hu, D. H.; Wang, F.; Wu, H. W.; Gong, X. J.; Liu, X.; Song, L.; Sheng, Z. H.; Zheng, H. R. Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv. Funct. Mater. 2016, 26, 8715–8725.

40

Wang, X. G.; Dong, Z. Y.; Cheng, H.; Wan, S. S.; Chen, W. H.; Zou, M. Z.; Huo, J. W.; Deng, H. X.; Zhang, X. Z. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 2015, 7, 16061–16070.

41

Zhang, X. D.; Chen, J.; Min, Y.; Park, G. B.; Shen, X.; Song, S. S.; Sun, Y. M.; Wang, H.; Long, W.; Xie, J. P. et al. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv. Funct. Mater. 2014, 24, 1718–1729.

42

Zhang, X. D.; Luo, Z. T.; Chen, J.; Shen, X.; Song, S. S.; Sun, Y. M.; Fan, S. J.; Fan, F. Y.; Leong, D. T.; Xie, J. P. Ultrasmall Au10–12(SG)10–12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565–4568.

File
12274_2017_1865_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 June 2017
Revised: 21 September 2017
Accepted: 23 September 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 21473045 and 51401066), the Fundamental Research Funds from the Central University (PIRSOF HIT A201503), and the State Key Laboratory of Urban Water Resource and Environment, the Harbin Institute of Technology (No. 2018DX04).

Return