Journal Home > Volume 11 , Issue 5

In situ electron microscopy, tomography, photoluminescence, and X-ray absorption spectroscopy were utilized to monitor and explain the formation and growth of internal pores within ZnO nanorods. Careful examination using electron microscopy and tomography indicate that nanosized internal pores start appearing within the individual solution-grown ZnO nanorods upon exposure to 200 ℃. The pore volume growth rate is proportional to the heat treatment time, indicating that the process is diffusion controlled, akin to a reverse Ostwald ripening-like process. A manageable pore growth rate of 1.4–4.4 nm3·min-1 was observed at 540 ℃, suggesting that the effective control over internal porosity can be achieved by carefully controlling the heat-treatment profile. Mechanistic studies using X-ray absorption spectroscopy indicated that the pore formation is linked to the significant reduction of the number of zinc vacancies after heat treatment. An optimum condition exists where most of the native surface defects are removed, while the bulk defects are contained within the internal pores. It is also demon-strated that the internal porosity can be exploited to improve the visible light absorption of ZnO. A combination of the lower defect density and improved light absorption of the heat-treated ZnO films thus lead to an increase in the photo-electrochemical response of more than 20× compared to that of the as-grown ZnO.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Elucidation of thermally induced internal porosity in zinc oxide nanorods

Show Author's information Albertus D. Handoko1,§( )Laura-Lynn Liew1,2,§Ming Lin1Gopinathan Sankar3Yonghua Du4Haibin Su2Zhili Dong2Gregory K. L. Goh1,2( )
Institute of Materials Research and Engineering Agency for Science Technology and Research (A*STAR)Singapore138634Singapore
School of Materials Science and Engineering Nanyang Technological UniversitySingapore639798Singapore
Department of Chemistry, University College LondonLondon WC1H 0AJ UK
Institute of Chemical and Engineering Sciences Agency for Science Technology and Research (A*STAR)Singapore627833Singapore

§ Albertus D. Handoko and Laura-Lynn Liew contributed equally to this work.

Abstract

In situ electron microscopy, tomography, photoluminescence, and X-ray absorption spectroscopy were utilized to monitor and explain the formation and growth of internal pores within ZnO nanorods. Careful examination using electron microscopy and tomography indicate that nanosized internal pores start appearing within the individual solution-grown ZnO nanorods upon exposure to 200 ℃. The pore volume growth rate is proportional to the heat treatment time, indicating that the process is diffusion controlled, akin to a reverse Ostwald ripening-like process. A manageable pore growth rate of 1.4–4.4 nm3·min-1 was observed at 540 ℃, suggesting that the effective control over internal porosity can be achieved by carefully controlling the heat-treatment profile. Mechanistic studies using X-ray absorption spectroscopy indicated that the pore formation is linked to the significant reduction of the number of zinc vacancies after heat treatment. An optimum condition exists where most of the native surface defects are removed, while the bulk defects are contained within the internal pores. It is also demon-strated that the internal porosity can be exploited to improve the visible light absorption of ZnO. A combination of the lower defect density and improved light absorption of the heat-treated ZnO films thus lead to an increase in the photo-electrochemical response of more than 20× compared to that of the as-grown ZnO.

Keywords: porosity, photocatalysis, hydrothermal, photocurrent, zinc oxide, solution growth

References(60)

1

Janotti, A.; Van de Walle, C. G. Native point defects in ZnO. Phys. Rev. B 2007, 76, 165202.

2

Huang, C. Y.; Yang, C. C.; Yu, H. C.; Chen, Y. C. Impact of preparation condition of ZnO electron transport layer on performance of hybrid organic-inorganic light-emitting diodes. J. Appl. Phys. 2014, 115, 083109.

3

Li, S. B.; Zhang, P.; Wang, Y. F.; Sarvari, H.; Liu, D. T.; Wu, J.; Yang, Y. J.; Wang, Z. M.; Chen, Z. D. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res. 2017, 10, 1092–1103.

4

Li, S. B.; Zhang, P.; Chen, H.; Wang, Y. F.; Liu, D. T.; Wu, J.; Sarvari, H.; Chen, Z. D. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J. Power Sources 2017, 342, 990–997.

5

Zhang, P.; Wu, J.; Wang, Y. F.; Sarvari, H.; Liu, D. T.; Chen, Z. D.; Li, S. B. Enhanced efficiency and environmental stability of planar perovskite solar cells by suppressing photocatalytic decomposition. J. Mater. Chem. A 2017, 5, 17368–17378.

6

Moon, T.; Shin, G. S.; Park, B. Recent advances in the transparent conducting ZnO for thin-film Si solar cells. Electron. Mater. Lett. 2015, 11, 917–930.

7

Shen, X. Y.; Mu, D. B.; Chen, S.; Wu, B. R.; Wu, F. Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 3118–3125.

8

Ullah, S.; Ahmed, F.; Badshah, A.; Ali Altaf, A.; Raza, R.; Lal, B.; Hussain, R. Solvothermal preparation of ZnO nanorods as anode material for improved cycle life Zn/AgO batteries. PLoS One 2013, 8, e75999.

9

Lee, K. M.; Lai, C. W.; Ngai, K. S.; Juan, J. C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448.

10

Cheng, C.; Amini, A.; Zhu, C.; Xu, Z. L.; Song, H. S.; Wang, N. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci. Rep. 2014, 4, 4181.

11

Tian, C. G.; Zhang, Q.; Wu, A. P.; Jiang, M. J.; Liang, Z. L.; Jiang, B. J.; Fu, H. G. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012, 48, 2858–2860.

12

Andeen, D.; Loeffler, L.; Padture, N.; Lange, F. F. Crystal chemistry of epitaxial ZnO on (1 1 1) MgAl2O4 produced by hydrothermal synthesis. J. Cryst. Growth 2003, 259, 103–109.

13

Byrappa, K.; Dayananda, A. S.; Sajan, C. P.; Basavalingu, B.; Shayan, M. B.; Soga, K.; Yoshimura, M. Hydrothermal preparation of ZnO: CNT and TiO2: CNT composites and their photocatalytic applications. J. Mater. Sci. 2008, 43, 2348–2355.

14

Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djurišić, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L. et al. Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 2006, 110, 20865–20871.

15

von Wenckstern, H.; Schmidt, H.; Grundmann, M.; Allen, M. W.; Miller, P.; Reeves, R. J.; Durbin, S. M. Defects in hydrothermally grown bulk ZnO. Appl. Phys. Lett. 2007, 91, 022913.

16

Richardson, J. J.; Goh, G. K. L.; Le, H. Q.; Liew, L. L.; Lange, F. F.; DenBaars, S. P. Thermally induced pore formation in epitaxial ZnO films grown from low temperature aqueous solution. Cryst. Growth Des. 2011, 11, 3558–3563.

17

Al-Nafiey, A.; Sieber, B.; Gelloz, B.; Addad, A.; Moreau, M.; Barjon, J.; Girleanu, M.; Ersen, O.; Boukherroub, R. Enhanced ultraviolet luminescence of ZnO nanorods treated by high-pressure water vapor annealing (HWA). J. Phys. Chem. C 2016, 120, 4571–4580.

18

Pourrahimi, A. M.; Liu, D. M.; Andersson, R. L.; Ström, V.; Gedde, U. W.; Olsson, R. T. Aqueous synthesis of (210) oxygen-terminated defect-free hierarchical ZnO particles and their heat treatment for enhanced reactivity. Langmuir 2016, 32, 11002–11013.

19

Wang, Y. Y.; Jiang, X. J.; Yang, L. S.; Jia, N.; Ding, Y. In situ synthesis of C/Cu/ZnO porous hybrids as anode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 1525–1532.

20

Zhang, J.; Wang, S. R.; Xu, M. J.; Wang, Y.; Zhu, B. L.; Zhang, S. M.; Huang, W. P.; Wu, S. H. Hierarchically porous ZnO architectures for gas sensor application. Cryst. Growth Des. 2009, 9, 3532–3537.

21

Mao, P.; Mahapatra, A. K.; Chen, J.; Chen, M. R.; Wang, G. H.; Han, M. Fabrication of polystyrene/ZnO micronano hierarchical structure applied for light extraction of lightemitting devices. ACS Appl. Mater. Interfaces 2015, 7, 19179–19188.

22

Cho, S.; Jang, J. W.; Lee, J. S.; Lee, K. H. Porous ZnO-ZnSe nanocomposites for visible light photocatalysis. Nanoscale 2012, 4, 2066–2071.

23

Fuller, M. L. A method of determining the axial ratio of a crystal from X-ray diffraction data: The axial ratio and lattice constants of zinc oxide. Science 1929, 70, 196–198.

24

Wyckoff, R. W. G. Crystal Structures; 2nd ed. Interscience Publishers: New York, 1963.

25

Wolf, S. G.; Houben, L.; Elbaum, M. Cryo-scanning transmission electron tomography of vitrified cells. Nat. Methods 2014, 11, 423–428.

26

Ding, Y.; Zhang, F.; Wang, Z. L. Deriving the three-dimensional structure of ZnO nanowires/nanobelts by scanning transmission electron microscope tomography. Nano Res. 2013, 6, 253–262.

27

Tan, H. R.; Tan, J. P. Y.; Boothroyd, C.; Hansen, T. W.; Foo, Y. L.; Lin, M. Experimental evidence for self-assembly of CeO2 particles in solution: Formation of single-crystalline porous CeO2 nanocrystals. J. Phys. Chem. C 2012, 116, 242–247.

28

Krost, A.; Christen, J.; Oleynik, N.; Dadgar, A.; Deiter, S.; Bläsing, J.; Krtschil, A.; Forster, D.; Bertram, F.; Diez A. Ostwald ripening and flattening of epitaxial ZnO layers during in situ annealing in metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2004, 85, 1496–1498.

29

Hale, P. S.; Maddox, L. M.; Shapter, J. G.; Voelcker, N. H.; Ford, M. J.; Waclawik, E. R. Growth kinetics and modeling of ZnO nanoparticles. J. Chem. Educ. 2005, 82, 775.

30

Lifshitz, I. M.; Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50.

31

Wagner, C. Theorie der alterung von niederschlägen durch umlösen (ostwald-reifung). Z. Elektrochem. 1961, 65, 581–591.

32

Deka Boruah, B.; Misra, A. Energy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector. ACS Appl. Mater. Interfaces 2016, 8, 18182–18188.

33

Vuong, N. M.; Reynolds, J. L.; Conte, E.; Lee, Y. I. H: ZnO nanorod-based photoanode sensitized by CdS and carbon quantum dots for photoelectrochemical water splitting. J. Phys. Chem. C 2015, 119, 24323–24331.

34

Rodnyi, P. A.; Khodyuk, I. V. Optical and luminescence properties of zinc oxide (review). Opt. Spectrosc. 2011, 111, 776–785.

35

Camarda, P.; Schneider, R.; Popescu, R.; Vaccaro, L.; Messina, F.; Buscarino, G.; Agnello, S.; Gelardi, F. M.; Cannas, M. Effect of thermal annealing on the luminescence of defective ZnO nanoparticles synthesized by pulsed laser ablation in water. Phys. Status Solidi C 2016, 13, 890–894.

36

Wang, Z. L.; Su, S. C.; Ling, F. C. C.; Anwand, W.; Wagner, A. Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition. J. Appl. Phys. 2014, 116, 033508.

37

Ridhuan, N. S.; Abdul Razak, K.; Lockman, Z.; Abdul Aziz, A. Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLoS One 2012, 7, e50405.

38

Pourrahimi, A. M.; Liu, D.; Ström, V.; Hedenqvist, M. S.; Olsson, R. T.; Gedde, U. W. Heat treatment of ZnO nano-particles: New methods to achieve high-purity nanoparticles for high-voltage applications. J. Mater. Chem. A 2015; 3, 17190–17200.

39

Liew, L. L.; Sankar, G.; Handoko, A. D.; Goh, G. K. L.; Kohara, S. Understanding the defect structure of solution grown zinc oxide. J. Solid State Chem. 2012, 189, 63–67.

40

Wang, Y. M.; Warschkow, O.; Marks, L. D. Surface evolution of rutile TiO2 (100) in an oxidizing environment. Surf. Sci. 2007, 601, 63–67.

41

Tsao, Y. C.; Søndergaard, T.; Skovsen, E.; Gurevich, L.; Pedersen, K.; Pedersen, T. G. Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors. Opt. Express 2013, 21, A84–A95.

42

Yalishev, V. S.; Yuldashev, S. U.; Igamberdiev, K. T.; Kang, T. W.; Park, B. H. Near-band-edge photoluminescence from ZnO film: Negative thermal quenching and role of adsorbed oxygen. J. Korean Phys. Soc. 2014, 64, 1–5.

43

Pastor, E.; Pesci, F. M.; Reynal, A.; Handoko, A. D.; Guo, M. J.; An, X. Q.; Cowan, A. J.; Klug, D. R.; Durrant, J. R.; Tang, J. W. Interfacial charge separation in Cu2O/RuOx as a visible light driven CO2 reduction catalyst. Phys. Chem. Chem. Phys. 2014, 16, 5922–5926.

44

Ho-Kimura, S.; Moniz, S. J. A.; Handoko, A. D.; Tang, J. W. Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes. J. Mater. Chem. A 2014, 2, 3948–3953.

45

Bang, S.; Lee, S.; Ko, Y.; Park, J.; Shin, S.; Seo, H.; Jeon, H. Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition. Nanoscale Res. Lett. 2012, 7, 290.

46

Li, X. C.; Li, J. X.; Cui, C. J.; Liu, Z. D.; Niu, Y. S. PbS nanoparticle sensitized ZnO Nanowire arrays to enhance photocurrent for water splitting. J. Phys. Chem. C 2016, 120, 4183–4188.

47

Wang, Y. J.; Shi, R.; Lin, J.; Zhu, Y. F. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 2011, 4, . 2922–2929.

48

Bera, A.; Basak, D. Pd-nanoparticle-decorated ZnO nanowires: Ultraviolet photosensitivity and photoluminescence properties. Nanotechnology 2011, 22, 265501.

49

Bera, A.; Basak, D. Photoluminescence and photoconductivity of ZnS-coated ZnO nanowires. ACS Appl. Mater. Interfaces 2010, 2, 408–412.

50

Wang, X. N.; Zhu, H. J.; Xu, Y. M.; Wang, H.; Tao, Y.; Hark, S.; Xiao, X. D.; Li, Q. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties. ACS Nano 2010, 4, 3302–3308.

51

Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem., Int. Ed. 2003, 42, 3031–3034.

52

Du, Y.; Zhu, Y.; Xi, S.; Yang, P.; Moser, H. O.; Breese, M. B. H.; Borgna, A. XAFCA: A new XAFS beamline for catalysis research. J. Synchrotron Rad. 2015, 22, 839–843.

53

Bearden, J. A.; Burr, A. F. Reevaluation of X-ray atomic energy levels. Rev. Mod. Phys. 1967, 39, 125–142.

54

Klementev, K. V. Deconvolution problems in x-ray absorption fine structure spectroscopy. J. Phys. D: Appl. Phys. 2001, 34, 2241–2247.

55

Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

56

Binsted, N.; EXCURV98. In CCLRC Daresbury Laboratory Computer Program. Daresbury, Chesire, 1998.

57

Tan, J. P. Y.; Tan, H. R.; Boothroyd, C.; Foo, Y. L.; He, C. B.; Lin, M. Three-dimensional structure of CeO2 nanocrystals. J. Phys. Chem. C 2011, 115, 3544–3551.

58

Lin, M.; Tan, H. R.; Tan, J. P. Y.; Boothroyd, C.; Foo, Y. L.; He, C. B. Transmission electron microscope tomography of nanostructured materials. J. Nanoeng. Nanomanuf. 2011, 1, 257–264.

59

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Meth. 2012, 9, 671–675.

60

Handoko, A. D.; Deng, S. Z.; Deng, Y. L.; Cheng, A. W. F.; Chan, K. W.; Tan, H. R.; Pan, Y. L.; Tok, E. S.; Sow, C. H.; Yeo, B. S. Enhanced activity of H2O2-treated copper(Ⅱ) oxide nanostructures for the electrochemical evolution of oxygen. Catal. Sci. Technol. 2016, 6, 269–274.

File
12274_2017_1862_MOESM1_ESM.pdf (10.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2017
Revised: 14 September 2017
Accepted: 20 September 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The authors would like to thank Mr Lim Poh Chong of Institute of Materials Research and Engineering Singapore, for help rendered in obtaining the XRD pattern and to Ms Joyce Tan, Ms Teo Siew Lang and Ms Hui Hui Kim, of Institute of Materials Research and Engineering Singapore, for help rendered in obtaining ex situ TEM images.

Return