Journal Home > Volume 11 , Issue 5

Near-infrared (NIR) fluorescent metal nanodots may have significant advantages in biological detection and bioimaging. Herein, we introduce tunable near-infrared fluorescent gold nanodots (AuNDs) protected by branched polyethylenimine (PEI) modified by surface segmental attachment of sulfhydryl groups (PEI-SH), abbreviated as PEI-SH-AuNDs, for simultaneous gene delivery and cell imaging. The modified PEI endows the resultant PEI-SH-AuNDs with the following excellent advantages. Sulfhydryl groups of PEI-SH anchor to the surface of AuNDs, and such polycations with amine groups give PEI-SH-AuNDs remarkable stability. The cationic polymer PEI-SH with positive charges enables PEI-SH-AuNDs to perform gene delivery, and the gene transfection efficiency can reach 22.8%. Moreover, the fluorescence of PEI-SH-AuNDs is tunable from visible red light (wavelength 609 nm) to NIR light (wavelength 811 nm) via an increase in the size of AuNDs. PEI-SH-AuNDs yielded gene transfection efficiency similar to that of commercial PEI, but showed much lower cytotoxicity and much greater red-shift fluorescence. With excellent photoluminescent properties, such multifunctional fluorescent PEI-SH-AuNDs hold promise in applications to bioimaging and as ideal fluorescent probes for tracking gene transfection behavior.

File
12274_2017_1860_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 June 2017
Revised: 18 September 2017
Accepted: 20 September 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51503085, 51373061 and 21304090), Science Foundation of China University of Petroleum, Beijing (No. 2462017YJRC027), open project of state key laboratory of supramolecular structure and materials (No. sklssm201724) and Graduate Innovation Fund of Jilin University (Project 2016112). We would like to thank Prof. Helmuth Moehwald from the Max Planck Institute of Colloids and Interfaces, Germany for useful discussions and helpful suggestions.

Return