Journal Home > Volume 11 , Issue 5

We present a simple method for obtaining high-density two- and threedimensional assemblies of gold nanorods (AuNRs) on polymer brush, referred to as "surface-floating super-aggregates", with uniform distribution spanning macroscopic distances. This was achieved via the single-step immersion of a poly(oligo ethylene glycol methacrylate) brush-containing substrate in a AuNR solution without any form of functionalization. Owing to extensive macroscale plasmonic coupling, we observed for the first time the gradual evolution of a unique sharp peak in addition to the transverse and longitudinal peaks, in this case, in the near-infrared (NIR) region. We also highlight the dynamic nature of these surface-floating super-aggregates, in which the AuNRs spread out when immersed in solution and collapse when dried to facilitate the access of probe molecules for biosensing applications. As a proof of concept, the surface-floating super-aggregates were used for surface-enhanced Raman spectroscopy, with which we detected rhodamine 6G at as low as sub-femtomolar concentrations. Owing to the excellent large-area uniform coverage and extreme simplicity of the fabrication method, such AuNR assemblies can easily be mass-produced and incorporated into cheap biosensors suitable for consumer use in the near future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface-floating gold nanorod super-aggregates with macroscopic uniformity

Show Author's information Abdul R. Ferhan1Youju Huang1Anirban Dandapat1Dong-Hwan Kim2( )
School of Chemical and Biomedical Engineering, Nanyang Technological University62 Nanyang Drive 637457Singapore
School of Chemical Engineering, Sungkyunkwan UniversityGyeonggi-do 16419Republic of Korea

Abstract

We present a simple method for obtaining high-density two- and threedimensional assemblies of gold nanorods (AuNRs) on polymer brush, referred to as "surface-floating super-aggregates", with uniform distribution spanning macroscopic distances. This was achieved via the single-step immersion of a poly(oligo ethylene glycol methacrylate) brush-containing substrate in a AuNR solution without any form of functionalization. Owing to extensive macroscale plasmonic coupling, we observed for the first time the gradual evolution of a unique sharp peak in addition to the transverse and longitudinal peaks, in this case, in the near-infrared (NIR) region. We also highlight the dynamic nature of these surface-floating super-aggregates, in which the AuNRs spread out when immersed in solution and collapse when dried to facilitate the access of probe molecules for biosensing applications. As a proof of concept, the surface-floating super-aggregates were used for surface-enhanced Raman spectroscopy, with which we detected rhodamine 6G at as low as sub-femtomolar concentrations. Owing to the excellent large-area uniform coverage and extreme simplicity of the fabrication method, such AuNR assemblies can easily be mass-produced and incorporated into cheap biosensors suitable for consumer use in the near future.

Keywords: nanocomposites, nanoparticle, surface-enhanced Raman spectroscopy (SERS), polymer brush

References(54)

1

Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

2

Wu, J. -L.; Chen, F. -C.; Hsiao, Y. -S.; Chien, F. -C.; Chen, P. L.; Kuo, C. -H.; Huang, M. H.; Hsu, C. -S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967.

3

Hu, M. -S.; Chen, H. -L.; Shen, C. -H.; Hong, L. -S.; Huang, B. -R.; Chen, K. -H.; Chen, L. -C. Photosensitive gold- nanoparticle-embedded dielectric nanowires. Nat. Mater. 2006, 5, 102–106.

4

Mangold, M. A.; Calame, M.; Mayor, M.; Holleitner, A. W. Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays. J. Am. Chem. Soc. 2011, 133, 12185–12191.

5

de la Rica, R.; Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 2012, 7, 821–824.

6

Rodriguez-Lorenzo, L.; de la Rica, R.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Stevens, M. M. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 2012, 11, 604–607.

7

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

8

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

9

Ross, M. B.; Blaber, M. G.; Schatz, G. C. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 2014, 5, 4090.

10

Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

11

Agarwal, A.; Huang, S. W.; O'Donnell, M.; Day, K. C.; Day, M.; Kotov, N.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.

12

Niidome, T.; Akiyama, Y.; Shimoda, K.; Kawano, T.; Mori, T.; Katayama, Y.; Niidome, Y. In vivo monitoring of intravenously injected gold nanorods using near-infrared light. Small 2008, 4, 1001–1007.

13

Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Kotov, N. A.; Conjusteau, A.; Motamedi, M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007, 7, 1914–1918.

14

Shao, X.; Zhang, H. N; Rajian, J. R.; Chamberland, D. L.; Sherman, P. S.; Quesada, C. A.; Koch, A. E.; Kotov, N. A.; Wang, X. D. 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 2011, 5, 8967–8973.

15

Ke, H. T.; Wang, J. R.; Dai, Z. F.; Jin, Y. S.; Qu, E. Z.; Xing, Z. W.; Guo, C. X.; Liu, J. B.; Yue, X. L. Bifunctional gold nanorod-loaded polymeric microcapsules for both contrast-enhanced ultrasound imaging and photothermal therapy. J. Mater. Chem. 2011, 21, 5561–5564.

16

Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near- infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

17

Kuo, W. -S.; Chang, C. -N.; Chang, Y. -T.; Yang, M. -H.; Chien, Y. -H.; Chen, S. -J.; Yeh, C. -S. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near- infrared optical imaging. Angew. Chem., Int. Ed. 2010, 49, 2711–2715.

18

Li, X. J.; Takashima, M.; Yuba, E.; Harada, A.; Kono, K. PEGylated PAMAM dendrimer-doxorubicin conjugate- hybridized gold nanorod for combined photothermal- chemotherapy. Biomaterials 2014, 35, 6576–6584.

19

Li, X. J.; Takeda, K.; Yuba, E.; Harada, A.; Kono, K. Preparation of PEG-modified PAMAM dendrimers having a gold nanorod core and their application to photothermal therapy. J. Mater. Chem. B 2014, 2, 4167–4176.

20

Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

21

Tsai, M. -F.; Chang, S. -H. G.; Cheng, F. -Y.; Shanmugam, V.; Cheng, Y. -S.; Su, C. -H.; Yeh, C. -S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7, 5330–5342.

22

Batson, P. E. Plasmonic modes revealed. Science 2012, 335, 47–48.

23

Shao, L.; Woo, K. C.; Chen, H. J.; Jin, Z.; Wang, J. F.; Lin, H. -Q. Angle- and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 2010, 4, 3053–3062.

24

Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651–1658.

25

Ferrier, R. C.; Lee, H. -S.; Hore, M. J. A.; Caporizzo, M.; Eckmann, D. M.; Composto, R. J. Gold nanorod linking to control plasmonic properties in solution and polymer nanocomposites. Langmuir 2014, 30, 1906–1914.

26

Jana, N. R.; Pal, T. Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv. Mater. 2007, 19, 1761–1765.

27

Adams, S. M.; Campione, S.; Caldwell, J. D.; Bezares, F. J.; Culbertson, J. C.; Capolino, F.; Ragan, R. Non-lithographic SERS substrates: Tailoring surface chemistry for Au nanoparticle cluster assembly. Small 2012, 8, 2239–2249.

28

Murphy, C. J.; Thompson, L. B.; Alkilany, A. M.; Sisco, P. N.; Boulos, S. P.; Sivapalan, S. T.; Yang, J. A.; Chernak, D. J.; Huang, J. The many faces of gold nanorods. J. Phys. Chem. Lett. 2010, 1, 2867–2875.

29

Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841.

30

Hamon, C.; Bizien, T.; Artzner, F.; Even-Hernandez, P.; Marchi, V. Replacement of CTAB with peptidic ligands at the surface of gold nanorods and their self-assembling properties. J. Colloid Interface Sci. 2014, 424, 90–97.

31

Nepal, D.; Onses, M. S.; Park, K.; Jespersen, M.; Thode, C. J.; Nealey, P. F.; Vaia, R. A. Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions. ACS Nano 2012, 6, 5693–5701.

32

Lee, Y. H.; Lee, C. K.; Tan, B. R.; Rui Tan, J. M.; Phang, I. Y.; Ling, X. Y. Using the Langmuir–Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.

33

Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. -L.; Cheah, K. -W.; Chen, J. -Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. 2008, 120, 9831–9836.

34

Peng, B.; Li, G. Y.; Li, D. H.; Dodson, S.; Zhang, Q.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Ling, X. Y.; Xiong, Q. H. Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 2013, 7, 5993–6000.

35

Peng, B.; Li, Z. P.; Mutlugun, E.; Hernández Martínez, P. L.; Li, D. H.; Zhang, Q.; Gao, Y.; Demir, H. V.; Xiong, Q. H. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence. Nanoscale 2014, 6, 5592–5598.

36

Martín, A.; Schopf, C.; Pescaglini, A.; Wang, J. J.; Iacopino, D. Facile formation of ordered vertical arrays by droplet evaporation of Au nanorod organic solutions. Langmuir 2014, 30, 10206–10212.

37

Ferhan, A. R.; Guo, L. H.; Kim, D. -H. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass. Langmuir 2010, 26, 12433–12442.

38

Shao, L.; Ruan, Q. F.; Jiang, R. B.; Wang, J. F. Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics. Small 2014, 10, 802–811.

39

Tang, W. Q.; Chase, D. B.; Rabolt, J. F. Immobilization of gold nanorods onto electrospun polycaprolactone fibers via polyelectrolyte decoration-A 3D SERS substrate. Anal. Chem. 2013, 85, 10702–10709.

40

Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale 2014, 6, 4781–4788.

41

Akin, M. S.; Yilmaz, M.; Babur, E.; Ozdemir, B.; Erdogan, H.; Tamer, U.; Demirel, G. Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications. J. Mater. Chem. B 2014, 2, 4894–4900.

42

Zhang, Q.; Lee, Y. H.; Phang, I. Y.; Lee, C. K.; Ling, X. Y. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles. Small 2014, 10, 2703–2711.

43

Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbo-Argibay, E.; Pazos-Perez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157–8161.

44

Stewart, A. F.; Lee, A.; Ahmed, A.; Ip, S.; Kumacheva, E.; Walker, G. C. Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering. ACS Nano 2014, 8, 5462–5467.

45

Hucknall, A.; Kim, D. -H.; Rangarajan, S.; Hill, R. T.; Reichert, W. M.; Chilkoti, A. Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Adv. Mater. 2009, 21, 1968–1971.

46

Ferhan, A. R.; Kim, D. -H. In-stacking: A strategy for 3D nanoparticle assembly in densely-grafted polymer brushes. J. Mater. Chem. 2012, 22, 1274–1277.

47

Ferhan, A. R.; Guo, L. H.; Zhou, X. D.; Chen, P.; Hong, S.; Kim, D. -H. Solid-phase colorimetric sensor based on gold nanoparticle-loaded polymer brushes: Lead detection as a case study. Anal. Chem. 2013, 85, 4094–4099.

48

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

49

Umadevi, S.; Feng, X.; Hegmann, T. Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater. 2013, 23, 1393–1403.

50

Kumar, J.; Thomas, R.; Swathi, R. S.; Thomas, K. G. Au nanorod quartets and Raman signal enhancement: Towards the design of plasmonic platforms. Nanoscale 2014, 6, 10454–10459.

51

Zhou, Y. Z.; Cheng, X. N.; Du, D.; Yang, J.; Zhao, N.; Ma, S. B.; Zhong, T.; Lin, Y. H. Graphene-silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: Size dependence of silver nanoparticles. J. Mater. Chem. C 2014, 2, 6850–6858.

52

He, L. F.; Huang, J. N.; Xu, T. T.; Chen, L. M.; Zhang, K.; Han, S. T.; He, Y.; Lee, S. T. Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate. J. Mater. Chem. 2012, 22, 1370–1374.

53

Gao, T.; Wang, Y. Q.; Wang, K.; Zhang, X. L.; Dui, J. N.; Li, G. M.; Lou, S. Y.; Zhou, S. M. Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate. ACS Appl. Mater. Interfaces 2013, 5, 7308–7314.

54

Chen, J.; Gong, Y. J.; Shang, J.; Li, J. L.; Wang, Y.; Wu, K. Two-dimensional Ag nanoparticle tetramer array for surface-enhanced Raman scattering measurements. J. Phys. Chem. C 2014, 118, 22702–22710.

File
12274_2017_1859_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 June 2017
Revised: 10 September 2017
Accepted: 20 September 2017
Published: 12 May 2018
Issue date: May 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (No. NRF-2016R1A2B4007209).

Return