Journal Home > Volume 11 , Issue 7

Understanding charge transfer processes between graphene and functional materials is crucial from the perspectives of fundamental sciences and potential applications, including electronic devices, photonic devices, and sensors. In this study, we present the charge transfer behavior of graphene and amine-rich polyethyleneimine (PEI) upon CO2 exposure, which was significantly improved after introduction of hygroscopic polyethylene glycol (PEG) in humid air. By blending PEI and PEG, the number of protonated amine groups in PEI was remarkably increased in the presence of water molecules, leading to a strong electron doping effect on graphene. The presence of CO2 gas resulted in a large change in the resistance of PEI/PEG-co-functionalized graphene because of the dramatic reduction of said doping effect, reaching a maximum sensitivity of 32% at 5, 000 ppm CO2 and an applied bias of 0.1 V in air with 60% relative humidity at room temperature. This charge transfer correlation will facilitate the development of portable graphene-based sensors for real-time gas detection and the extension of the applications of graphene-based electronic and photonic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Charge transfer in graphene/polymer interfaces for CO2 detection

Show Author's information Myungwoo Son1Yusin Pak1Sang-Soo Chee1Francis Malar Auxilia1Kihyeun Kim1Byung-Kee Lee2Sungeun Lee2Sun Kil Kang2Chaedeok Lee2Jeong Soo Lee2Ki Kang Kim3Yun Hee Jang4Byoung Hun Lee1Gun-Young Jung1( )Moon-Ho Ham1( )
School of Materials Science and EngineeringResearch Institute for Solar and Sustainable EnergiesGwangju Institute of Science & Technology123 Cheomdangwagi-ro Buk-guGwangju61005Republic of Korea
Materials & Devices Advanced Research InstituteLG ElectronicsWoomyeon R & D Campus38 Baumoe-roSeocho-guSeoul06763Republic of Korea
Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
Energy Systems EngineeringDaegu Gyeongbuk Institute of Science & Technology33Techno jungang-daeroHyeonpung-myeonDalseong-gunDaegu42988Republic of Korea

Abstract

Understanding charge transfer processes between graphene and functional materials is crucial from the perspectives of fundamental sciences and potential applications, including electronic devices, photonic devices, and sensors. In this study, we present the charge transfer behavior of graphene and amine-rich polyethyleneimine (PEI) upon CO2 exposure, which was significantly improved after introduction of hygroscopic polyethylene glycol (PEG) in humid air. By blending PEI and PEG, the number of protonated amine groups in PEI was remarkably increased in the presence of water molecules, leading to a strong electron doping effect on graphene. The presence of CO2 gas resulted in a large change in the resistance of PEI/PEG-co-functionalized graphene because of the dramatic reduction of said doping effect, reaching a maximum sensitivity of 32% at 5, 000 ppm CO2 and an applied bias of 0.1 V in air with 60% relative humidity at room temperature. This charge transfer correlation will facilitate the development of portable graphene-based sensors for real-time gas detection and the extension of the applications of graphene-based electronic and photonic devices.

Keywords: graphene, charge transfer, carbon dioxide, polyethyleneimine (PEI), polyethylene glycol

References(29)

1

Rao, C. N. R. ; Sood, A. K. ; Subrahmanyam, K. S. ; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem., Int. Ed. 2009, 48, 7752–7777.

2

Ratinac, K. R. ; Yang, W. R. ; Ringer, S. P. ; Braet, F. Toward ubiquitous environmental gas sensors–capitalizing on the promise of graphene. Environ. Sci. Technol. 2010, 44, 1167–1176.

3

Schedin, F. ; Geim, A. K. ; Morozov, S. V. ; Hill, E. W. ; Blake, P. ; Katsnelson, M. I. ; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

4

Huang, B. ; Li, Z. Y. ; Liu, Z. R. ; Zhou, G. ; Hao, S. G. ; Wu, J. ; Gu, B. L. ; Duan, W. H. Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J. Phys. Chem. C 2008, 112, 13442–13446.

5

Fowler, J. D. ; Allen, M. J. ; Tung, V. C. ; Yang, Y. ; Kaner, R. B. ; Weiller, B. H. Practical chemical sensors from chemically derived graphene. ACS Nano 2009, 3, 301–306.

6

Al-Mashat, L. ; Shin, K. ; Kalantar-zadeh, K. ; Plessis, J. D. ; Han, S. H. ; Kojima, R. W. ; Kaner, R. B. ; Li, D. ; Gou, X. L. ; Ippolito, S. J. et al. Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 2010, 114, 16168–16173.

7

Zhou, Y. ; Jiang, Y. D. ; Xie, G. Z. ; Wu, M. ; Tai, H. L. Gas sensors for CO2 detection based on RGO-PEI films at room temperature. Chin. Sci. Bull. 2014, 59, 1999–2005.

8

Georgakilas, V. ; Otyepka, M. ; Bourlinos, A. B. ; Chandra, V. ; Kim, N. ; Kemp, K. C. ; Hobza, P. ; Zboril, R. ; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214.

9

Lee, C. Y. ; Strano, M. S. Amine basicity (pKb) controls the analyte binding energy on single walled carbon nanotube electronic sensor arrays. J. Am. Chem. Soc. 2008, 130, 1766–1773.

10

Cha, M. J. ; Song, W. ; Kim, Y. ; Jung, D. S. ; Jung, M. W. ; Lee, S. I. ; Adhikari, P. D. ; An, K. S. ; Park, C. Y. Long-term air-stable n-type doped graphene by multiple lamination with polyethyleneimine. RSC Adv. 2014, 4, 37849–37853.

11

Liu, A. T. ; Kunai, Y. ; Liu, P. W. ; Kaplan, A. ; Cottrill, A. L. ; Smith-Dell, J. S. ; Strano, M. S. Electrical energy generation via reversible chemical doping on carbon nanotube fibers. Adv. Mater. 2016, 28, 9752–9757.

12

Mahajan, S. G. ; Liu, A. T. ; Cottrill, A. L. ; Kunai, Y. ; Bender, D. ; Castillo Jr, J. ; Gibbs, S. L. ; Strano, M. S. Sustainable power sources based on high efficiency thermopower wave devices. Energy Environ. Sci. 2016, 9, 1290–1298.

13

D'Alessandro, D. M. ; Smit, B. ; Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 2010, 49, 6058–6082.

14

Rochelle, G. T. Amine scrubbing for CO2 capture. Science 2009, 325, 1652–1654.

15

Yang, S. B. ; Zhan, L. ; Xu, X. Y. ; Wang, Y. L. ; Ling, L. C. ; Feng, X. L. Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture. Adv. Mater. 2013, 25, 2130–2134.

16

Lu, W. ; Xiao, P. ; Gu, J. C. ; Zhang, J. W. ; Huang, Y. J. ; Huang, Q. ; Chen, T. Aggregation-induced emission of tetraphenylethylene-modified polyethyleneimine for highly selective CO2 detection. Sens. Actuator B-Chem. 2016, 228, 551–556.

17

Star, A. ; Han, T. R. ; Joshi, V. ; Gabriel, J. C. P. ; Grüner, G. Nanoelectronic carbon dioxide sensors. Adv. Mater. 2004, 16, 2049–2052.

18

Sabri, S. S. ; Guillemette, J. ; Guermoune, A. ; Siaj, M. ; Szkopek, T. Enhancing gas induced charge doping in graphene field effect transistors by non-covalent functionalization with polyethyleneimine. Appl. Phys. Lett. 2012, 100, 113106.

19

Li, X. S. ; Cai, W. W. ; An, J. ; Kim, S. ; Nah, J. ; Yang, D. X. ; Piner, R. ; Velamakanni, A. ; Jung, I. ; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

20

Son, J. G. ; Son, M. ; Moon, K. J. ; Lee, B. H. ; Myoung, J. M. ; Strano, M. S. ; Ham, M. H. ; Ross, C. A. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography. Adv. Mater. 2013, 25, 4723–4728.

21

Reina, A. ; Son, H. ; Jiao, L. Y. ; Fan, B. ; Dresselhaus, M. S. ; Liu, Z. F. ; Kong, J. Transferring and identification of singleand few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.

22

Satyapal, S. ; Filburn, T. ; Trela, J. ; Strange, J. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuels 2001, 15, 250–255.

23

Rackley, S. A. Absorption Capture systems. In Carbon Capture and Storage. Rackley, S. A., Ed. ; Butterworth-Heinemann: Oxford, 2010; pp 103-106.

24

Kwon, O. H. ; Kikuchi, A. ; Yamato, M. ; Okano, T. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials 2003, 24, 1223–1232.

25

Guo, B. D. ; Liu, Q. ; Chen, E. D. ; Zhu, H. W. ; Fang, L. ; Gong, J. R. Controllable N-doping of graphene. Nano Lett. 2010, 10, 4975–4980.

26

Shim, M. ; Javey, A. ; Kam, N. W. S. ; Dai, H. J. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 2001, 123, 11512–11513.

27

Chang, C. Y. ; Kang, B. S. ; Wang, H. T. ; Ren, F. ; Wang, Y. L. ; Pearton, S. J. ; Dennis, D. M. ; Johnson J. W. ; Rajagopal, P. ; Roberts, J. C. et al. CO2 detection using polyethyleneimine/ starch functionalized AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2008, 92, 232102.

28

Waghuley, S. A. ; Yenorkar, S. M. ; Yawale S. S. ; Yawale, S. P. Application of chemically synthesized conducting polymer-polypyrrole as a carbon dioxide gas sensor. Sens. Actuator B-Chem. 2008, 128, 366–373.

29

Chiang, C. J. ; Tsai, K. T. ; Lee, Y. H. ; Lin, H. W. ; Yang, Y. L. ; Shih, C. C. ; Lin, C. Y. ; Jeng, H. A. ; Weng, Y. H. ; Cheng, Y. Y. et al. In situ fabrication of conducting polymer composite film as a chemical resistive CO2 gas sensor. Microelectron. Eng. 2013, 111, 409–415.

File
12274_2017_1857_MOESM1_ESM.pdf (644.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 July 2017
Revised: 10 September 2017
Accepted: 15 September 2017
Published: 02 August 2018
Issue date: July 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the Future Semiconductor Device Technology Development Program (No. 10044868) funded by Ministry of Trade, Industry & Energy (MOTIE) and Korea Semiconductor Research Consortium (KSRC), Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2017M3D1A1040828), the National Research Foundation of Korea (NRF) through the government of Korea (MSIP) (No. 2016R1A4A1012929), Global Frontier R & D Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2013M3A6B1078873), the GIST Research Institute (GRI) grant funded by the GIST in 2017, and the Materials & Devices Advanced Research Institute of LG Electronics Inc. in Seoul, Korea.

Return