Journal Home > Volume 11 , Issue 6

The current bottleneck facing further developments in fuel cells is the lack of durable electrocatalysts with satisfactory activity. In this study, a simple and fast one-pot wet-chemical method is proposed to synthesize novel Au@Pt star-like bimetallic nanocrystals (Au@Pt SLNCs) with a low Pt/Au ratio of 1:4, which show great electrocatalytic properties and outstanding stability toward the electro-oxidation reactions commonly found in fuel cells. The star-like Au core (90 ± 20 nm) is partially coated with 5 nm Pt nanocluster shells, a morphology which creates a large amount of boundaries and edges, thus tuning the surface electronic structure as demonstrated by X-ray photoelectron spectroscopy and CO-stripping measurements. This promotes excellent electrocatalytic performance towards the formic acid oxidation reaction in acidic media and the ethanol oxidation reaction in alkaline media, compared to commercial Pt or Au@Pt triangular nanoprisms, in which the Au core is fully coated by a Pt shell. Au@Pt SLNCs have the highest current density within the dehydrogenation potential range, needing the least potential to achieve a certain current density as well as the highest long-term stability. Because of the small amount of Pt usage, very fast synthesis, excellent electrocatalytic activity and durability, the proposed Au@Pt SLNCs have a promising practical application in fuel cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation

Show Author's information Yi Peng1,2Lidong Li1( )Ran Tao1Lingyu Tan1Mengna Qiu1Lin Guo1( )
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of Chemistry and EnvironmentBeihang UniversityBeijing100191China
Department of Chemistry and BiochemistryUniversity of California1156 High StreetSanta CruzCalifornia95064USA

Abstract

The current bottleneck facing further developments in fuel cells is the lack of durable electrocatalysts with satisfactory activity. In this study, a simple and fast one-pot wet-chemical method is proposed to synthesize novel Au@Pt star-like bimetallic nanocrystals (Au@Pt SLNCs) with a low Pt/Au ratio of 1:4, which show great electrocatalytic properties and outstanding stability toward the electro-oxidation reactions commonly found in fuel cells. The star-like Au core (90 ± 20 nm) is partially coated with 5 nm Pt nanocluster shells, a morphology which creates a large amount of boundaries and edges, thus tuning the surface electronic structure as demonstrated by X-ray photoelectron spectroscopy and CO-stripping measurements. This promotes excellent electrocatalytic performance towards the formic acid oxidation reaction in acidic media and the ethanol oxidation reaction in alkaline media, compared to commercial Pt or Au@Pt triangular nanoprisms, in which the Au core is fully coated by a Pt shell. Au@Pt SLNCs have the highest current density within the dehydrogenation potential range, needing the least potential to achieve a certain current density as well as the highest long-term stability. Because of the small amount of Pt usage, very fast synthesis, excellent electrocatalytic activity and durability, the proposed Au@Pt SLNCs have a promising practical application in fuel cells.

Keywords: oxidation, electrocatalyst, formic acid, Au@Pt core–shell nanocrystals, ethanol

References(67)

1

Sharaf, O. Z.; Orhan, M. F. An overview of fuel cell technology: Fundamentals and applications. Renew. Sust. Energ. Rev. 2014, 32, 810–853.

2

Peng, Y.; Lu, B. Z.; Wang, N.; Li, L. G.; Chen, S. W. Impacts of interfacial charge transfer on nanoparticle electrocatalytic activity towards oxygen reduction. Phys. Chem. Chem. Phys. 2017, 19, 9336–9348.

3

Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2017, 16, 57–69.

4

Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffatc, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808–1825.

5

Sheng, T.; Xu, Y. F.; Jiang, Y. X.; Huang, L.; Tian, N.; Zhou, Z. Y.; Broadwell, I.; Sun, S. G. Structure design and performance tuning of nanomaterials for electrochemical energy conversion and storage. Acc. Chem. Res. 2016, 49, 2569–2577.

6

Zhu, C. Z.; Du, D.; Eychmuller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

7

Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Bridge- bonded formate: Active intermediate or spectator species in formic acid oxidation on a Pt film electrode? Langmuir 2006, 22, 10399–10408.

8

Cuesta, A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. J. Am. Chem. Soc. 2006, 128, 13332–13333.

9

Cuesta, A.; Cabello, G.; Gutiérrez, C.; Osawa, M. Adsorbed formate: The key intermediate in the oxidation of formic acid on platinum electrodes. Phys. Chem. Chem. Phys. 2011, 13, 20091–20095.

10

Herrero, E.; Fernández-Vega, A.; Feliu, J. M.; Aldaz, A. Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As. J. Electroanal. Chem. 1993, 350, 73–88.

11

Sun, S. G.; Clavilier, J. Electrochemical study on the poisoning intermediate formed from methanol dissociation at low index and stepped platinum surfaces. J. Electroanal. Chem. 1987, 236, 95–112.

12

Wang, S. Y.; Kristian, N.; Jiang, S. P.; Wang, X. Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation. Electrochem. Commun. 2008, 10, 961–964.

13

Zhang, S.; Shao, Y. Y.; Liao, H. G.; Liu, J.; Aksay, I. A.; Yin, G. P.; Lin, Y. H. Graphene decorated with PtAu alloy nanoparticles: Facile synthesis and promising application for formic acid oxidation. Chem. Mater. 2011, 23, 1079–1081.

14

Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew. Chem., Int. Ed. 2010, 49, 2211–2214.

15

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

16

Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem., Int. Ed. 2010, 49, 411–414.

17

Colmati, F.; Antolini, E.; Gonzalez, E. R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J. Power Sources 2006, 157, 98–103.

18

Dong, L. F.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. F. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48, 781–787.

19

Dutta, A.; Mahapatra, S. S.; Datta, J. High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrogen Energ. 2011, 36, 14898–14906.

20

Ren, F. F.; Wang, H. W.; Zhai, C. Y.; Zhu, M. S.; Yue, R. R.; Du, Y. K.; Yang, P.; Xu, J. K.; Lu, W. S. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium. ACS Appl. Mater. Interfaces 2014, 6, 3607–3614.

21

Shao, M. H.; Peles, A.; Shoemaker, K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Lett. 2011, 11, 3714–3719.

22

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

23

Gan, L.; Rudi, S.; Cui, C. H.; Heggen, M.; Strasser, P. Size- controlled synthesis of sub-10 nm PtNi3 alloy nanoparticles and their unusual volcano-shaped size effect on ORR electrocatalysis. Small 2016, 12, 3189–3196.

24

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

25

Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Au20: A tetrahedral cluster. Science 2003, 299, 864–867.

26

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

27

Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate- assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.

28

Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

29

Bai, J.; Fang, C. L.; Liu, Z. H.; Chen, Y. A one-pot gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxidation of oxalic acid. Nanoscale 2016, 8, 2875–2880.

30

Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.

31

Gong, M. X.; Li, F. M.; Yao, Z. G.; Zhang, S. Q.; Dong, J. W.; Chen, Y.; Tang, Y. W. Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation. Nanoscale 2015, 7, 4894–4899.

32

Li, F. M.; Kang, Y. Q.; Peng, R. L.; Li, S. N.; Xia, B. Y.; Liu, Z. H.; Chen, Y. Sandwich-structured Au@polyallylamine@Pd nanostructures: Tuning the electronic properties of the Pd shell for electrocatalysis. J. Mater. Chem. A 2016, 4, 12020–12024.

33

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

34

Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nanotoday 2012, 7, 448–466.

35

Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape- control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.

36

Zhang, H.; Jin, M. S.; Xia, Y. N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049.

37

Tan, L. Y.; Li, L. D.; Peng, Y.; Guo, L. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction. Nanotechnology 2015, 26, 505401.

38

Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

39

Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

40

Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R. M. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 2013, 135, 5521–5524.

41

Devivaraprasad, R.; Ramesh, R.; Naresh, N.; Kar, T.; Singh, R. K.; Neergat, M. Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. Langmuir 2014, 30, 8995–9006.

42

Higgins, D. C.; Wang, R. Y.; Hoque, M. A.; Zamani, P.; Abureden, S.; Chen, Z. W. Morphology and composition controlled platinum-cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy 2014, 10, 135–143.

43

Nogami, M.; Koike, R.; Jalem, R.; Kawamura, G.; Yang, Y.; Sasaki, Y. Synthesis of porous single-crystalline platinum nanocubes composed of nanoparticles. J. Phys. Chem. Lett. 2010, 1, 568–571.

44

Yin, J.; Wang, J. H.; Li, M. R.; Jin, C. Z.; Zhang, T. Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chem. Mater. 2012, 24, 2645–2654.

45

Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

46

Schrinner, M.; Ballauff, M.; Talmon, Y.; Kauffmann, Y.; Thun, J.; Möller, M.; Breu, J. Single nanocrystals of platinum prepared by partial dissolution of Au-Pt nanoalloys. Science 2009, 323, 617–620.

47

García-Negrete, C. A.; Rojas, T. C.; Knappett, B. R.; Jefferson, D. A.; Wheatley, A. E. H.; Fernandez, A. Shape- defined nanodimers by tailored heterometallic epitaxy. Nanoscale 2014, 6, 11090–11097.

48

Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

49

Lee, J.; Oh, I.; Hwang, S.; Kwak, J. Scanning tunneling microscopy investigation of silver deposition upon Au(111) in the presence of chloride. Langmuir 2002, 18, 8025–8032.

50

Li, L. D.; Peng, Y.; Yue, Y. H.; Hu, Y.; Liang, X.; Yin, P. G.; Guo, L. Synthesis of concave gold nanocuboids with high-index facets and their enhanced catalytic activity. Chem. Commun. 2015, 51, 11591–11594.

51

Wang, L.; Yamauchi, Y. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core–shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 2010, 132, 13636–13638.

52

Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett. 2011, 11, 3394–3398.

53

Wanjala, B. N.; Luo, J.; Loukrakpam, R.; Fang, B.; Mott, D.; Njoki, P. N.; Engelhard, M.; Naslund, H. R.; Wu, J. K.; Wang, L. C. et al. Nanoscale alloying, phase-segregation, and core–shell evolution of gold-platinum nanoparticles and their electrocatalytic effect on oxygen reduction reaction. Chem. Mater. 2010, 22, 4282–4294.

54

Chen, S. G.; Wei, Z. D.; Qi, X. Q.; Dong, L. C.; Guo, Y. G.; Wan, L. J.; Shao, Z. G.; Li, L. Nanostructured polyaniline- decorated Pt/C@PANI core–shell catalyst with enhanced durability and activity. J. Am. Chem. Soc. 2012, 134, 13252– 13255.

55

Yang, J.; Ying, J. Y. Nanocomposites of Ag2S and noble metals. Angew. Chem., Int. Ed. 2011, 50, 4637–4643.

56

Wu, Y.; Wang, D. S.; Chen, X. B.; Zhou, G.; Yu, R.; Li, Y. D. Defect-dominated shape recovery of nanocrystals: A new strategy for trimetallic catalysts. J. Am. Chem. Soc. 2013, 135, 12220–12223.

57

Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880–11883.

58

Ilayaraja, N.; Prabu, N.; Lakshminarasimhan, N.; Murugan, P.; Jeyakumar, D. Au-Pt graded nano-alloy formation and its manifestation in small organics oxidation reaction. J. Mater. Chem. A 2013, 1, 4048–4056.

59

Fennell, J.; He, D. S.; Tanyi, A. M.; Logsdail, A. J.; Johnston, R. L.; Li, Z. Y.; Horswell, S. L. A selective blocking method to control the overgrowth of Pt on Au nanorods. J. Am. Chem. Soc. 2013, 135, 6554–6561.

60

Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res. 2009, 2, 406–415.

61

Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. J. Kinetics and mechanism of the electrooxidation of formic acid— Spectroelectrochemical studies in a flow cell. Angew. Chem., Int. Ed. 2006, 45, 981–985.

62

Ge, X. B.; Yan, X. L.; Wang, R. Y.; Tian, F.; Ding, Y. Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing. J. Phys. Chem. C 2009, 113, 7379–7384.

63

Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.

64

Zhang, D. F.; Li, J.; Kang, J. X.; Chen, T. W.; Zhang, Y.; Wang, L. L.; Guo, L. From Pt-rich dendrites to Ni-rich cuboctahedrons: Structural evolution and electrocatalytic property studies. CrystEngComm 2014, 16, 5331–5337.

65

Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. Platinum-cobalt alloy networks for methanol oxidation electrocatalysis. J. Mater. Chem. 2012, 22, 23659–23667.

66

Zhang, B. W.; Zhang, Z. C.; Liao, H. G.; Gong, Y.; Gu, L.; Qu, X. M.; You, L. X.; Liu, S.; Huang, L.; Tian, X. C. et al. Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. Nano Energy 2016, 19, 198–209.

67

Kim, B. J.; Kwon, K.; Rhee, C. K.; Han, J.; Lim, T. H. Modification of Pt nanoelectrodes dispersed on carbon support using irreversible adsorption of Bi to enhance formic acid oxidation. Electrochim. Acta 2008, 53, 7744–7750.

File
12274_2017_1851_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 April 2017
Revised: 06 September 2017
Accepted: 15 September 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21273001) and the National Basic Research Program of China (No. 2014CB931802).

Return