Journal Home > Volume 11 , Issue 4

A flexible and free-standing multichannel carbon nanofiber (MCNF) film electrode was fabricated through electrospinning and carbonization. After high-temperature treatment of MCNFs in vacuum, the obtained fibers (MCNFs-V) had a dilated interlayer spacing of graphene sheets (0.398 nm) and an ultra-low specific surface area (15.3 m2/g). When used as an anode for sodium-ion batteries, the MCNFs-V showed a discharge plateau below 0.1 V, and sodium was intercalated into the stacked graphene sheets layers during the sodiation process. The MCNFs-V exhibited a reversible and high specific capacity of 222 mAh/g at a current density of 0.1 A/g after 100 cycles and excellent long-term cycling stability, which was superior to that of MCNFs. The improved sodium storage performance was attributed to the unique microstructure of the MCNFs-V with an enlarged interlayer spacing of graphene sheets for sodium intercalation. The MCNFs-V electrode holds great promise as an anode material for commercial sodium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing

Show Author's information Beibei Yuan1Linchao Zeng2Xizhen Sun2Yan Yu1,2( )Qingsong Wang1( )
State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefei230026China
Key Laboratory of Materials for Energy ConversionChinese Academy of Sciences (CAS)Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China

Abstract

A flexible and free-standing multichannel carbon nanofiber (MCNF) film electrode was fabricated through electrospinning and carbonization. After high-temperature treatment of MCNFs in vacuum, the obtained fibers (MCNFs-V) had a dilated interlayer spacing of graphene sheets (0.398 nm) and an ultra-low specific surface area (15.3 m2/g). When used as an anode for sodium-ion batteries, the MCNFs-V showed a discharge plateau below 0.1 V, and sodium was intercalated into the stacked graphene sheets layers during the sodiation process. The MCNFs-V exhibited a reversible and high specific capacity of 222 mAh/g at a current density of 0.1 A/g after 100 cycles and excellent long-term cycling stability, which was superior to that of MCNFs. The improved sodium storage performance was attributed to the unique microstructure of the MCNFs-V with an enlarged interlayer spacing of graphene sheets for sodium intercalation. The MCNFs-V electrode holds great promise as an anode material for commercial sodium-ion batteries.

Keywords: sodium-ion batteries, nanofibers, flexible, interlayer spacing

References(49)

1

Tarascon, J. -M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

2

Tarascon, J. -M. Is lithium the new gold? Nat. Chem. 2010, 2, 510.

3

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

4

Pan, H. L.; Hu, Y. -S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

5

Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

6

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

7

Sathiya, M.; Hemalatha, K.; Ramesha, K.; Tarascon, J. -M.; Prakash, A. S. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater. 2012, 24, 1846–1853.

8

Yoshida, H.; Yabuuchi, N.; Kubota, K.; Ikeuchi, I.; Garsuch, A.; Schulz-Dobrick, M.; Komaba, S. P2-type Na2/3Ni1/3Mn2/3−xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chem. Commun. 2014, 50, 3677–3680.

9

Xu, S. Y.; Wu, X. Y.; Li, Y. M.; Hu, Y. S.; Chen, L. Q. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin. Phys. B 2014, 23, 118202.

10

Yu, H. J.; Guo, S. H.; Zhu, Y. B.; Ishida, M.; Zhou, H. S. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem. Commun. 2014, 50, 457–459.

11

Barpanda, P.; Oyama, G.; Nishimura, S. -I.; Chung, S. -C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358.

12

Li, Y. M.; Mu, L. Q.; Hu, Y. -S.; Li, H.; Chen, L. Q.; Huang, X. J. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2016, 2, 139–145.

13

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

14

Liu, J.; Wen, Y. R.; van Aken, P. A.; Maier, J.; Yu, Y. Facile synthesis of highly porous Ni–Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. Nano Lett. 2014, 14, 6387–6392.

15

Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.

16

Pan, H. L.; Lu, X.; Yu, X. Q.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 1186–1194.

17

Kim, H.; Lim, E.; Jo, C.; Yoon, G.; Hwang, J.; Jeong, S.; Lee, J.; Kang, K. Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy 2015, 16, 62–70.

18

Senguttuvan, P.; Rousse, G.; Vezin, H.; Tarascon, J. -M.; Palacín, M. R. Titanium(Ⅲ) sulfate as new negative electrode for sodium-ion batteries. Chem. Mater. 2013, 25, 2391–2393.

19

Wu, X. Y.; Ma, J.; Ma, Q. D.; Xu, S. Y.; Hu, Y. -S.; Sun, Y.; Li, H.; Chen, L. Q.; Huang, X. J. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 13193–13197.

20

Wu, X. Y.; Jin, S. F.; Zhang, Z. Z.; Jiang, L. W.; Mu, L. Q.; Hu, Y. -S.; Li, H.; Chen, X. L.; Armand, M.; Chen, L. Q. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 2015, 1, e1500330.

21

Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-principles study of alkali metal-graphite intercalation compounds. J. Power Sourc. 2013, 243, 585–587.

22

Ge, P.; Fouletier, M. Electrochemical intercalation of sodium in graphite. Solid State Ionics 1988, 28–30, 1172–1175.

23

Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

24

Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

25

Fu, L. J.; Tang, K.; Song, K. P.; van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384–1389.

26

Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Simonsen, J.; Ji, X. L. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 2013, 1, 10662–10666.

27

Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. -M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

28

Zeng, L. C.; Li, W. H.; Cheng, J. X.; Wang, J. Q.; Liu, X. W.; Yu, Y. N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. RSC Adv. 2014, 4, 16920–16927.

29

Bommier, C.; Leonard, D.; Jian, Z. L.; Stickle, W. F.; Greaney, P. A.; Ji, X. L. New paradigms on the nature of solid electrolyte interphase formation and capacity fading of hard carbon anodes in Na-ion batteries. Adv. Mater. Interfaces 2016, 3, 1600449.

30

Simone, V.; Boulineau, A.; de Geyer, A.; Rouchon, D.; Simonin, L.; Martinet, S. Hard carbon derived from cellulose as anode for sodium ion batteries: Dependence of electrochemical properties on structure. J. Energy Chem. 2016, 25, 761–768.

31

Sun, N.; Liu, H.; Xu, B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 20560–20566.

32

Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

33

Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium- ion batteries. Adv. Sci. 2015, 2, 1500195.

34

Gwon, H.; Kim, H. -S.; Lee, K. U.; Seo, D. -H.; Park, Y. C.; Lee, Y. -S.; Ahn, B. T.; Kang, K. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4, 1277–1283.

35

Wang, H. -G.; Wu, Z.; Meng, F. -L.; Ma, D. -L.; Huang, X. -L.; Wang, L. -M.; Zhang, X. -B. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 2013, 6, 56–60.

36

Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nature Commun. 2015, 6, 8850.

37

Elizabeth, I.; Singh, B. P.; Trikha, S.; Gopukumar, S. Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. J. Power Sourc. 2016, 329, 412–421.

38

Qiu, Y. -H.; Wang, T. -H.; Song, C. -W.; Qu, X. -C. The influence of pyrolysis atmosphere on the microstructure of a carbon membrane produced from polyacrylonitrile. New Carbon Mater. 2006, 2, 161–166.

39

Wang, Y.; Huang, W.; Wei, F.; Luo, G. H.; Yu, H.; Aihemai, T. J. High temperature treatment and characterization of carbon nanotubes. Chem. J. Chin. Univ. 2002, 24, 953–957.

40

Mochida, I.; Ku, C. -H.; Korai, Y. Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches. Carbon 2001, 39, 399–410.

41

Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.

42

Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett 2015, 15, 5888–5892.

43

Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

44

Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X. Surface- modified graphite as an improved intercalating anode for lithium-ion batteries. Electrochem. Solid-State Lett. 2003, 6, A30–A33.

45

Wang, L. S.; Huang, Y. D.; Jia, D. Z. Triethyl orthoformate as a new film-forming electrolytes solvent for lithium-ion batteries with graphite anodes. Electrochim. Acta 2006, 51, 4950–4955.

46

Thomas, P.; Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta 2002, 47, 3303–3307.

47

Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.

48

Li, Y. M.; Hu, Y. -S.; Titirici, M. -M.; Chen, L. Q.; Huang, X. J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659.

49

Liu, P.; Li, Y. M.; Hu, Y. -S.; Li, H.; Chen, L. Q.; Huang, X. J. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 13046–13052.

File
12274_2017_1847_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 June 2017
Revised: 03 September 2017
Accepted: 08 September 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21373195, 51674228, and 51622210), the National Key Research and Development Program of China (No. 2016YFB0100305), the Fundamental Research Funds for the Central Universities (Nos. WK3430000004 and WK2320000034), the Collaborative Innovation Center of Suzhou Nano Science and Technology. Q. S. W. is supported by Youth Innovation Promotion Association CAS (No. 2013286).

Return