Journal Home > Volume 11 , Issue 4

The toxicity of nanoparticles in a biological system is an integration of effects arising from surface functionality, particle size, ionic dissolution, etc. This complexity suggests that generalization of a material's toxicity may be inappropriate. Moreover, from a medicinal point of view, toxicity can be used for treatment of malignant cells, such as cancer. In this study, highly biocompatible carbon nanodots (gCDs) were synthesized by reacting citric acid and urea in glycerol, which resulted in abundant hydroxyl functional groups on the particle surface. gCDs show excitation-dependent photoluminescence but with bright green to yellow emission. Importantly, a series of toxicity assessments showed that as-synthesized gCDs possessed exceptional biocompatibilities to various biological entities including 18 bacteria species, Petunia axillaris seedlings, and Artemia franciscana nauplii. Furthermore, the particles were shown to have low to no toxic effects on human embryonic kidney (HEK-293), breast (MCF-7), and oral squamous (CAL-27) carcinoma cell lines. Of particular interest, the gCDs displayed antiproliferative activities against ovarian choriocarcinoma cells (JAr/Jeg-3 cell lines), which may be further explored for cancer drug discovery.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Selective toxicity of hydroxyl-rich carbon nanodots for cancer research

Show Author's information Tak H. Kim1Joseph P. Sirdaarta2Qian Zhang3Ehsan Eftekhari1James St. John3,4Derek Kennedy3Ian E. Cock2Qin Li1( )
Queensland Micro and Nano Technology Center & School of EngineeringGriffith University170 Kessels RdNathanQLD4111Australia
Australian Rivers Institute & School of Natural SciencesGriffith University170 Kessels RdNathanQLD4111Australia
Griffith Institute for Drug DiscoveryGriffith University46 Don Young RdNathanQLD4111Australia
Menzies Health Institute QueenslandGriffith UniversityParkland DriveSouthportQLD4222Australia

Abstract

The toxicity of nanoparticles in a biological system is an integration of effects arising from surface functionality, particle size, ionic dissolution, etc. This complexity suggests that generalization of a material's toxicity may be inappropriate. Moreover, from a medicinal point of view, toxicity can be used for treatment of malignant cells, such as cancer. In this study, highly biocompatible carbon nanodots (gCDs) were synthesized by reacting citric acid and urea in glycerol, which resulted in abundant hydroxyl functional groups on the particle surface. gCDs show excitation-dependent photoluminescence but with bright green to yellow emission. Importantly, a series of toxicity assessments showed that as-synthesized gCDs possessed exceptional biocompatibilities to various biological entities including 18 bacteria species, Petunia axillaris seedlings, and Artemia franciscana nauplii. Furthermore, the particles were shown to have low to no toxic effects on human embryonic kidney (HEK-293), breast (MCF-7), and oral squamous (CAL-27) carcinoma cell lines. Of particular interest, the gCDs displayed antiproliferative activities against ovarian choriocarcinoma cells (JAr/Jeg-3 cell lines), which may be further explored for cancer drug discovery.

Keywords: carbon nanodots, fluorescence, nanotoxicity, choriocarcinoma cells, thioredoxin reductase

References(48)

1

Prasad, P. N. Introduction to Nanomedicine and Nanobioengineering; John Wiley & Sons: Hoboken, 2012.

2

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

3

Li, Q.; Ohulchanskyy, T. Y.; Liu, R. L.; Koynov, K.; Wu, D. Q.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 2010, 114, 12062–12068.

4

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

5

Nie, H.; Li, M. J.; Li, Q. S.; Liang, S. J.; Tan, Y. Y.; Sheng, L.; Shi, W.; Zhang, S. X. -A. Carbon dots with continuously tunable full-colour emission and their application in ratiometric pH sensing. Chem. Mater. 2014, 26, 3104–3112.

6

Kim, T. H.; Wang, F.; McCormick, P.; Wang, L. Z.; Brown, C.; Li, Q. Salt-embedded carbon nanodots as a UV and thermal stable fluorophore for light-emitting diodes. J. Lumin. 2014, 154, 1–7.

7

Kim, T. H.; White, A. R.; Sirdaarta, J. P.; Ji, W. Y.; Cock, I. E.; St. John, J.; Boyd, S. E.; Brown, C. L.; Li, Q. Yellow-emitting carbon nanodots and their flexible and transparent films for white LEDs. ACS Appl. Mater. Interfaces 2016, 8, 33102–33111.

8

Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

9

Zeng, Q. H.; Shao, D.; He, X.; Ren, Z. Y.; Ji, W. Y.; Shan, C. X.; Qu, S. N.; Li, J.; Chen, L.; Li, Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem. B 2016, 4, 5119–5126.

10

Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y. P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.

11

Zhu, H.; Wang, X. L.; Li, Y. L.; Wang, Z. J.; Yang, F.; Yang, X. R. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 5118–5120.

12

Wang, F.; Pang, S. P.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C. Y. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 2010, 22, 4528–4530.

13

Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

14

Strauss, V.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E.; Clark, T. et al. Carbon nanodots: Toward a comprehensive understanding of their photoluminescence. J. Am. Chem. Soc. 2014, 136, 17308–17316.

15

Zhu, S. J.; Zhang, J. H.; Tang, S. J.; Qiao, C. Y.; Wang, L.; Wang, H. Y.; Liu, X.; Li, B.; Li, Y. F.; Yu, W. L. et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 2012, 22, 4732–4740.

16

Kim, T. H.; Ho, H. W.; Brown, C. L.; Cresswell, S. L.; Li, Q. Amine-rich carbon nanodots as a fluorescence probe for methamphetamine precursors. Anal. Methods 2015, 7, 6869–6876.

17

Di Trapani, G.; Perkins, A.; Clarke, F. Production and secretion of thioredoxin from transformed human trophoblast cells. Mol. Hum. Reprod. 1998, 4, 369–375.

18

Toyokuni, S.; Okamoto, K.; Yodoi, J.; Hiai, H. Persistent oxidative stress in cancer. FEBS Lett. 1995, 358, 1–3.

19

Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320.

20

Titirici, M. -M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116.

21

Li, X. M.; Zhang, S. L.; Kulinich, S. A.; Liu, Y. L.; Zeng, H. B. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 2014, 4, 4976.

22

Nimlos, M. R.; Blanksby, S. J.; Qian, X. H.; Himmel, M. E.; Johnson, D. K. Mechanisms of glycerol dehydration. J. Phys. Chem. A 2006, 110, 6145–6156.

23

Bühler, W.; Dinjus, E.; Ederer, H. J.; Kruse, A.; Mas, C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J. Supercrit. Fluids 2002, 22, 37–53.

24

Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 2012, 134, 747–750.

25

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

26

Amarnath, C. A.; Hong, C. E.; Kim, N. H.; Ku, B. -C.; Kuila, T.; Lee, J. H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 2011, 49, 3497–3502.

27

Chang, P. R.; Jian, R. J.; Zheng, P. W.; Yu, J. G.; Ma, X. F. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr. Polym. 2010, 79, 301–305.

28

Williams, D. H.; Fleming, I. Spectroscopic Methods in Organic Chemistry; 6th ed. McGraw-Hill Higher Education: New York, 2008.

29

Unni, S. M.; Devulapally, S.; Karjule, N.; Kurungot, S. Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction. J. Mater. Chem. 2012, 22, 23506–23513.

30

Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653.

31

Tian, F. Y.; Cui, Y. X.; Teplyakov, A. V. Nitroxidation of H-terminated Si(111) surfaces with nitrobenzene and nitrosobenzene. J. Phys. Chem. C 2014, 118, 502–512.

32

Hammond, C.; Lopez-Sanchez, J. A.; Hasbi Ab Rahim, M.; Dimitratos, N.; Jenkins, R. L.; Carley, A. F.; He, Q.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Trans. 2011, 40, 3927–3937.

33

Seredych, M.; Hulicova-Jurcakova, D.; Lu, G. Q.; Bandosz, T. J. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 2008, 46, 1475–1488.

34

Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C. -P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.

35

Dong, F.; Wu, L. W.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171–15174.

36

Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473.

37

Ruebhart, D. R.; Wickramasinghe, W.; Cock, I. E. Protective efficacy of the antioxidants vitamin E and trolox against Microcystis aeruginosa and microcystin-LR in Artemia franciscana nauplii. J. Toxicol. Environ. Health A 2009, 72, 1567–1575.

38

Naim, F.; Nakasugi, K.; Crowhurst, R. N.; Hilario, E.; Zwart, A. B.; Hellens, R. P.; Taylor, J. M.; Waterhouse, P. M.; Wood, C. C. Advanced engineering of lipid metabolism in nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS One 2012, 7, e52717.

39

Leroueil, P. R.; Hong, S.; Mecke, A.; Baker, J. R.; Orr, B. G.; Holl, M. M. B. Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc. Chem. Res. 2007, 40, 335–342.

40

Thun, M. J.; Henley, S. J.; Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 2002, 94, 252–266.

41

Brancale, A.; Silvestri, R. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med. Res. Rev. 2007, 27, 209–238.

42

Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2012, 64, 24–36.

43

Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015, 8, 1771–1799.

44

Urig, S.; Becker, K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol. 2006, 16, 452–465.

45

Gromer, S.; Arscott, L. D.; Williams C. H., Jr.; Schirmer, R. H.; Becker, K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J. Biol. Chem. 1998, 273, 20096–20101.

46

Fang, J.; Holmgren, A. Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J. Am. Chem. Soc. 2006, 128, 1879–1885.

47

Srivastava, M.; Singh, S.; Self, W. T. Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environ. Health Perspect. 2012, 120, 56–61.

48

Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 2015, 15, 6030–6035.

File
12274_2017_1838_MOESM1_ESM.pdf (6.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 June 2017
Revised: 29 August 2017
Accepted: 01 September 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

T. K. acknowledges the support of Australian Postgraduate Award and Queensland Smart Futures PhD Scholarship. Q. L. acknowledges Griffith University Research Infrastructure Funding and Griffith School of Engineering Research Seed Funding. The authors acknowledge Dr. Barry Wood at the University of Queensland for his assistance in XPS analyses, Dr. Fatima Naim at Queensland University of Technology for her assistance in plant toxicity assessments, and Dr. Giovanna Di Trapani for discussions on the TRx system.

Return