Journal Home > Volume 11 , Issue 4

Developing well-defined nanostructures with superior surface-enhanced Raman scattering (SERS) performance is a critical and highly desirable goal for the practical applications of SERS in sensing and analysis. Here, a SERS-active substrate was fabricated by decorating a MoS2 monolayer with Ag nanowire (NW) and nanoparticle (NP) structures, using a spin-coating method. Both experimental and theoretical results indicate that strong SERS signals of rhodamine 6G (R6G) molecules can be achieved at "hotspots" formed in the Ag NW-Ag NP-MoS2 hybrid structure, with an enhancement factor of 106. The SERS enhancement is found to be strongly polarization dependent. The fabricated SERS substrate also exhibits ultrasensitive detection capabilities with a detection limit of 10–11 M, as well as reliable reproducibility and good stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications

Show Author's information Juan Li1,2Weina Zhang1,2Hongxiang Lei1( )Baojun Li2( )
State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat-Sen UniversityGuangzhou510275China
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of NanophotonicsJinan UniversityGuangzhou511443China

Abstract

Developing well-defined nanostructures with superior surface-enhanced Raman scattering (SERS) performance is a critical and highly desirable goal for the practical applications of SERS in sensing and analysis. Here, a SERS-active substrate was fabricated by decorating a MoS2 monolayer with Ag nanowire (NW) and nanoparticle (NP) structures, using a spin-coating method. Both experimental and theoretical results indicate that strong SERS signals of rhodamine 6G (R6G) molecules can be achieved at "hotspots" formed in the Ag NW-Ag NP-MoS2 hybrid structure, with an enhancement factor of 106. The SERS enhancement is found to be strongly polarization dependent. The fabricated SERS substrate also exhibits ultrasensitive detection capabilities with a detection limit of 10–11 M, as well as reliable reproducibility and good stability.

Keywords: surface-enhanced Raman scattering (SERS), Ag nanowire-nanoparticle, MoS2 monolayer, polarization dependence

References(30)

1

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

2

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

3

Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

4

Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

5

Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317–8322.

6

Ling, X.; Fang, W. J.; Lee, Y. H.; Araujo, P. T.; Zhang, X.; Rodriguez-Nieva, J. F.; Lin, Y. X.; Zhang, J.; Kong, J.; Dresselhaus, M. S. Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2. Nano Lett. 2014, 14, 3033–3040.

7

Lv, R. T.; Li, Q.; Botello-Méndez, A. R.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q. Z.; Elías, A. L.; Cruz-Silva, R.; Gutiérrez, H. R. et al. Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2012, 2, 586.

8

Huh, S.; Park, J.; Kim, Y. S.; Kim, K. S.; Hong, B. H.; Nam, J. -M. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano 2011, 5, 9799–9806.

9

Sun, L. F.; Hu, H. L.; Zhan, D.; Yan, J. X.; Liu, L.; Teguh, J. S.; Yeow, E. K. L.; Lee, P. S.; Shen, Z. X. Plasma modified MoS2 nanoflakes for surface enhanced Raman scattering. Small 2014, 10, 1090–1095.

10

Lu, J. P.; Lu, J. H.; Liu, H. W.; Liu, B.; Gong, L. L.; Tok, E. S.; Loh, K. P.; Sow, C. H. Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 2015, 11, 1792–1800.

11

Su, S.; Zhang, C.; Yuwen, L. H.; Chao, J.; Zuo, X. L.; Liu, X. F.; Song, C. Y.; Fan, C. H.; Wang, L. H. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nano-particles. ACS Appl. Mater. Interfaces 2014, 6, 18735–18741.

12

Rycenga, M.; Camargo, P. H. C.; Li, W. Y.; Moran, C. H.; Xia, Y. N. Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J. Phys. Chem. Lett. 2010, 1, 696–703.

13

Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009, 9, 485–490.

14

Li, J.; Zhang, W. N.; Zhang, Y.; Lei, H. X.; Li, B. J. Temperature-dependent resonance energy transfer from CdSe–ZnS core–shell quantum dots to monolayer MoS2. Nano Res. 2016, 9, 2623–2631.

15

Cadiz, F.; Robert, C.; Wang, G.; Kong, W.; Fan, X.; Blei, M.; Lagarde, D.; Gay, M.; Manca, M.; Taniguchi, T. et al. Ultra-low power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides. 2D Mater. 2016, 3, 045008.

16

Chang, S.; Ko, H.; Gunawidjaja, R.; Tsukruk, V. V. Raman markers from silver nanowire crossbars. J. Phys. Chem. C 2011, 115, 4387–4394.

17

Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 1999, 121, 9932–9939.

18

Huang, J. -A.; Zhao, Y. -Q.; Zhang, X. -J.; He, L. -F.; Wong, T. -L.; Chui, Y. -S.; Zhang, W. -J.; Lee, S. -T. Ordered Ag/Si nanowires array: Wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett. 2013, 13, 5039–5045.

19

He, Y.; Su, S.; Xu, T. T.; Zhong, Y. L.; Zapien, J. A.; Li, J.; Fan, C. H.; Lee, S. T. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nanotoday 2011, 6, 122–130.

20

He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009, 3, 3993–4002.

21

Stamplecoskie, K. G.; Scaiano, J. C.; Tiwari, V. S.; Anis, H. Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2011, 115, 1403–1409.

22

Ciou, S. H.; Cao, Y. W.; Huang, H. C.; Su, D. Y.; Huang, C. L. SERS enhancement factors studies of silver nanoprism and spherical nanoparticle colloids in the presence of bromide ions. J. Phys. Chem. C 2009, 113, 9520–9525.

23

Fan, W.; Lee, Y. H.; Pedireddy, S.; Zhang, Q.; Liu, T. X; Ling, X. Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 2014, 6, 4843–4851.

24

Wei, H.; Hao, F.; Huang, Y. Z.; Wang, W. Z.; Nordlander, P.; Xu, H. X. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett. 2008, 8, 2497–2502.

25

Ouyang, Q. L.; Zeng, S. W.; Jiang, L.; Hong, L. Y.; Xu, G. X.; Dinh, X. -Q. Y.; Qian, J.; He, S. L.; Qu, J. L.; Coquet, P. et al. Sensitivity enhancement of transition metal dichalcogenides silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 2016, 6, 28190.

26

Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y. P.; Nordlander, P.; Natelson, D. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 2007, 7, 1396–1400.

27

Li, Z.; Jiang, S. Z.; Huo, Y. Y.; Liu, M.; Yang, C.; Zhang, C.; Liu, X. Y.; Sheng, Y. Q.; Li, C. H.; Man, B. Y. Controlledlayer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS. Opt. Express 2016, 24, 26097–26108.

28

Lu, G.; Li, H.; Liusman, C.; Yin, Z. Y.; Wu, S. X.; Zhang, H. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem. Sci. 2011, 2, 1817–1821.

29

Fan, M. K.; Brolo, A. G. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys. Chem. Chem. Phys. 2009, 11, 7381–7389.

30

Zhang, N.; Tong, L. M.; Zhang, J. Graphene-based enhanced Raman scattering toward analytical applications. Chem. Mater. 2016, 28, 6426–6435.

File
12274_2017_1836_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 March 2017
Revised: 22 August 2017
Accepted: 01 September 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11274395), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13042) and the Open Fund of the Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications (Jinan University).

Return