Journal Home > Volume 11 , Issue 1

Self-assembling peptides (SAPs) are synthetic bioinspired biomaterials that can be feasibly multi-functionalized for cell transplantation and/or drug delivery therapies. Despite their superior biocompatibility and ease of scaling-up for production, they are unfortunately hampered by weak mechanical properties due to transient non-covalent interactions among and within the self-assembled peptide chains, thus limiting their potential applications as fillers, hemostat solutions, and fragile scaffolds for soft tissues. Here, we have developed and characterized a cross-linking strategy that increases both the stiffness and the tailorability of SAP hydrogels, enabling the preparation of transparent flexible threads, discs, channels, and hemispherical constructs. Empirical and computational results, in close agreement with each other, confirmed that the cross-linking reaction does not affect the previously self-assembled secondary structures. In vitro tests also provided a first hint of satisfactory biocompatibility by favoring viability and differentiation of human neural stem cells. This work could bring self-assembling peptide technology to many applications that have been precluded so far, especially in regenerative medicine.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cross-linked self-assembling peptide scaffolds

Show Author's information Raffaele Pugliese1Amanda Marchini1,2Gloria Anna Ada Saracino2Ronald N. Zuckermann3Fabrizio Gelain1,2( )
IRCCS Casa Sollievo della SofferenzaOpera di San Pio da PietralcinaViale Capuccini 1 San Giovanni RotondoFoggia71013Italy
Center for Nanomedicine and Tissue Engineering (CNTE)A. O. Ospedale Niguarda Cà GrandaPiazza dell' Ospedale Maggiore 3Milan20162Italy
The Molecular FoundryLawrence Berkeley National Laboratory, 1 Cyclotron Road, BerkeleyCalifornia94720USA

Abstract

Self-assembling peptides (SAPs) are synthetic bioinspired biomaterials that can be feasibly multi-functionalized for cell transplantation and/or drug delivery therapies. Despite their superior biocompatibility and ease of scaling-up for production, they are unfortunately hampered by weak mechanical properties due to transient non-covalent interactions among and within the self-assembled peptide chains, thus limiting their potential applications as fillers, hemostat solutions, and fragile scaffolds for soft tissues. Here, we have developed and characterized a cross-linking strategy that increases both the stiffness and the tailorability of SAP hydrogels, enabling the preparation of transparent flexible threads, discs, channels, and hemispherical constructs. Empirical and computational results, in close agreement with each other, confirmed that the cross-linking reaction does not affect the previously self-assembled secondary structures. In vitro tests also provided a first hint of satisfactory biocompatibility by favoring viability and differentiation of human neural stem cells. This work could bring self-assembling peptide technology to many applications that have been precluded so far, especially in regenerative medicine.

Keywords: self-assembling peptide, co-assembling peptide, cross-linking, sulfo-SMCC, supramolecular self-assembly

References(63)

1

Matson, J. B.; Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun. 2012, 48, 26-33.

2

Saracino, G. A. A.; Cigognini, D.; Silva, D.; Caprini, A.; Gelain, F. Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev. 2013, 42, 225-262.

3

Morgan, C. E.; Dombrowski, A. W.; Rubert Pérez, C. M.; Bahnson, E. S. M.; Tsihlis, N. D.; Jiang, W. L.; Jiang, Q.; Vercammen, J. M.; Prakash, V. S.; Pritts, T. A. et al. Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage. ACS Nano 2016, 10, 899-909.

4

Ozeki, M.; Kuroda, S.; Kon, K.; Kasugai, S. Differentiation of bone marrow stromal cells into osteoblasts in a self-assembling peptide hydrogel: In vitro and in vivo studies. J. Biomater. Appl. 2011, 25, 663-684.

5

Schneider, A.; Garlick, J. A.; Egles, C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 2008, 3, e1410.

6

Loo, Y.; Wong, Y. C.; Cai, E. Z.; Ang, C. H.; Raju, A.; Lakshmanan, A.; Koh, A. G.; Zhou, H. J.; Lim, T. C.; Moochhala, S. M. et al. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials 2014, 35, 4805-4814.

7

Tysseling-Mattiace, V. M.; Sahni, V.; Niece, K. L.; Birch, D.; Czeisler, C.; Fehlings, M. G.; Stupp, S. I.; Kessler, J. A. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 2008, 28, 3814-3823.

8

Yan, C. Q.; Pochan, D. J. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 2010, 39, 3528-3540.

9

Davis, M. E.; Michael Motion, J. P.; Narmoneva, D. A.; Takahashi, T.; Hakuno, D.; Kamm, R. D.; Zhang, S.; Lee, R. T. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 2005, 111, 442-450.

10

Cigognini, D.; Silva, D.; Paloppi, S.; Gelain, F. Evaluation of mechanical properties and therapeutic effect of injectable self-assembling hydrogels for spinal cord injury. J. Biomed. Nanotechnol. 2014, 10, 309-323.

11

Tao, H.; Wu, Y. H.; Li, H. F.; Wang, C. F.; Zhang, Y.; Li, C.; Wen, T. Y.; Wang, X. M.; He, Q.; Wang, D. L. et al. BMP7-based functionalized self-assembling peptides for nucleus pulposus tissue engineering. ACS Appl. Mater. Interfaces 2015, 7, 17076-17087.

12

Tatman, P. D.; Gerull, W.; Sweeney-Easter, S.; Davis, J. I.; Gee, A. O.; Kim, D. H. Multiscale biofabrication of articular cartilage: Bioinspired and biomimetic approaches. Tissue Eng. B Rev. 2015, 21, 543-559.

13

Brunton, P. A.; Davies, R. P.; Burke, J. L.; Smith, A.; Aggeli, A.; Brookes, S. J.; Kirkham, J. Treatment of early caries lesions using biomimetic self-assembling peptides--A clinical safety trial. Br. Dent. J. 2013, 215, E6.

14

Sang, L. Y. H.; Liang, Y. X.; Li, Y.; Wong, W. M.; Tay, D. K. C.; So, K. F.; Ellis-Behnke, R. G.; Wu, W. T.; Cheung, R. T. F. A self-assembling nanomaterial reduces acute brain injury and enhances functional recovery in a rat model of intracerebral hemorrhage. Nanomed. : Nanotechnol. Biol. Med. 2015, 11, 611-620.

15

Guo, J. S.; Leung, K. K.; Su, H. X.; Yuan, Q. J.; Wang, L.; Chu, T. H.; Zhang, W. M.; Pu, J. K. S.; Ng, G. K. P.; Wong, W. M. et al. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomed. : Nanotechnol. Biol. Med. 2009, 5, 345-351.

16

Cigognini, D.; Satta, A.; Colleoni, B.; Silva, D.; Donegà, M.; Antonini, S.; Gelain, F. Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold. PLoS One 2011, 6, e19782.

17

Gelain, F.; Panseri, S.; Antonini, S.; Cunha, C.; Donega, M.; Lowery, J.; Taraballi, F.; Cerri, G.; Montagna, M.; Baldissera, F. et al. Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano 2011, 5, 227-236.

18

Yang, H. N.; Yang, H. L.; Xie, Z. H.; Wang, P.; Bi, J. Z. Self-assembling nanofibers alter the processing of amyloid precursor protein in a transgenic mouse model of Alzheimer's disease. Neurol. Res. 2015, 37, 84-91.

19

Xiong, N.; Dong, X. Y.; Zheng, J.; Liu, F. F.; Sun, Y. Design of lvffark and lvffark-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS Appl. Mater. Interfaces 2015, 7, 5650-5662.

20

Caprini, A.; Silva, D.; Zanoni, I.; Cunha, C.; Volontè, C.; Vescovi, A.; Gelain, F. A novel bioactive peptide: Assessing its activity over murine neural stem cells and its potential for neural tissue engineering. N. Biotechnol. 2013, 30, 552-562.

21

Gelain, F.; Unsworth, L. D.; Zhang, S. G. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J. Control. Rel. 2010, 145, 231-239.

22

Pugliese, R.; Gelain, F. Peptidic biomaterials: From self-assembling to regenerative medicine. Trends Biotechnol. 2016, 35, 145-158.

23

Kasoju, N.; Bora, U. Silk fibroin in tissue engineering. Adv. Healthcare Mater. 2012, 1, 393-412.

24

Ibusuki, S.; Halbesma, G. J.; Randolph, M. A.; Redmond, R. W.; Kochevar, I. E.; Gill, T. J. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering. Tissue Eng. 2007, 13, 1995-2001.

25

Ma, L.; Gao, C. Y.; Mao, Z. W.; Zhou, J.; Shen, J. C.; Hu, X. Q.; Han, C. M. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24, 4833-4841.

26

Olofsson, C.; Ahl, T.; Johansson, T.; Larsson, S.; Nellgård, P.; Ponzer, S.; Fagrell, B.; Przybelski, R.; Keipert, P.; Winslow, N. et al. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified hemoglobin (hemospan®) in patients undergoing major orthopedic surgery. Anesthesiology 2006, 105, 1153-1163.

27

Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X. F.; Bornmann, W. G.; Spassova, M.; Bencsath, K. P.; Panageas, K. S. et al. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: A phase I trial. Proc. Natl. Acad. Sci. USA 2001, 98, 3270-3275.

28

Björkholm, M.; Fagrell, B.; Przybelski, R.; Winslow, N.; Young, M.; Winslow, R. M. A phase I single blind clinical trial of a new oxygen transport agent (MP4), human hemoglobin modified with maleimide-activated polyethylene glycol. Haematologica 2005, 90, 505-515.

29

Riddles, P. W.; Blakeley, R. L.; Zerner, B. Reassessment of Ellman's reagent. Methods Enzymol. 1983, 91, 49-60.

30

Riddles, P. W.; Blakeley, R. L.; Zerner, B. Ellman's reagent: 5, 5'-dithiobis(2-nitrobenzoic acid)--a reexamination. Anal. Biochem. 1979, 94, 75-81.

31

Gelain, F.; Silva, D.; Caprini, A.; Taraballi, F.; Natalello, A.; Villa, O.; Nam, K. T.; Zuckermann, R. N.; Doglia, S. M.; Vescovi, A. Bmhp1-derived self-assembling peptides: Hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano 2011, 5, 1845-1859.

32

Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J. Phys. : Conf. Ser. 2010, 247, 012007.

33

Taraballi, F.; Campione, M.; Sassella, A.; Vescovi, A.; Paleari, A.; Hwang, W.; Gelain, F. Effect of functionalization on the self-assembling propensity of β-sheet forming peptides. Soft Matter 2009, 5, 660-668.

34

Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812-7824.

35

Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.; Tieleman, D. P.; Marrink, S. J. The martini coarse-grained force field: Extension to proteins. J. Chem. Theory Comput. 2008, 4, 819-834.

36

Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. Gromacs: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701-1718.

37

Mazzini, L.; Gelati, M.; Profico, D. C.; Sgaravizzi, G.; Projetti Pensi, M.; Muzi, G.; Ricciolini, C.; Rota Nodari, L.; Carletti, S.; Giorgi, C. et al. Human neural stem cell transplantation in als: Initial results from a phase i trial. J. Transl. Med. 2015, 13, 17.

38

Raspa, A.; Saracino, G. A. A.; Pugliese, R.; Silva, D.; Cigognini, D.; Vescovi, A.; Gelain, F. Complementary co-assembling peptides: From in silico studies to in vivo application. Adv. Funct. Mater. 2014, 24, 6317-6328.

39

Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171-1178.

40

Haines-Butterick, L.; Rajagopal, K.; Branco, M.; Salick, D.; Rughani, R.; Pilarz, M.; Lamm, M. S.; Pochan, D. J.; Schneider, J. P. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl. Acad. Sci. USA 2007, 104, 7791-7796.

41

Ding, Y.; Li, Y.; Qin, M.; Cao, Y.; Wang, W. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability. Langmuir 2013, 29, 13299-13306.

42

Khalily, M. A.; Goktas, M.; Guler, M. O. Tuning viscoelastic properties of supramolecular peptide gels via dynamic covalent crosslinking. Org. Biomol. Chem. 2015, 13, 1983-1987.

43

Riener, C. K.; Kada, G.; Gruber, H. J. Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4'-dithiodipyridine. Anal. Bioanal. Chem. 2002, 373, 266-276.

44

Maiti, N. C.; Apetri, M. M.; Zagorski, M. G.; Carey, P. R.; Anderson, V. E. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein. J. Am. Chem. Soc. 2004, 126, 2399-2408.

45

Jain, R.; Agarwal, A.; Kierski, P. R.; Schurr, M. J.; Murphy, C. J.; McAnulty, J. F.; Abbott, N. L. The use of native chemical functional groups presented by wound beds for the covalent attachment of polymeric microcarriers of bioactive factors. Biomaterials 2013, 34, 340-352.

46

Schagger, H. Tricine-SDS-PAGE. Nat. Protoc. 2006, 1, 16-22.

47

Chirgadze, Y. N.; Nevskaya, N. A. Infrared spectra and resonance interaction of amide-i vibration of the antiparallel-chain pleated sheet. Biopolymers 1976, 15, 607-625.

48

Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J. M.; Raussens, V. ATR-FTIR: A "rejuvenated" tool to investigate amyloid proteins. Biochim. Biophys. Acta 2013, 1828, 2328-2338.

49

Hwang, W.; Zhang, S.; Kamm, R. D.; Karplus, M. Kinetic control of dimer structure formation in amyloid fibrillogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 12916-12921.

50

Saracino, G. A. A.; Gelain, F. Modelling and analysis of early aggregation events of bmhp1-derived self-assembling peptides. J. Biomol. Struct. Dyn. 2014, 32, 759-775.

51

Sunde, M.; Serpell, L. C.; Bartlam, M.; Fraser, P. E.; Pepys, M. B.; Blake, C. C. F. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 1997, 273, 729-739.

52

Yokoi, H.; Kinoshita, T.; Zhang, S. Dynamic reassembly of peptide rada16 nanofiber scaffold. Proc. Natl. Acad. Sci. USA 2005, 102, 8414-8419.

53

Haynie, D. T. Physics of polypeptide multilayer films. J. Biomed. Mater. Res. B: Appl. Biomater. 2006, 78B, 243-252.

54

Mermut, O.; Phillips, D. C.; York, R. L.; McCrea, K. R.; Ward, R. S.; Somorjai, G. A. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. J. Am. Chem. Soc. 2006, 128, 3598-3607.

55

Hermanson, G. T. Bioconjugate Techniques; 3rd ed. Elsevier: Amsterdam, 2013.

56

Demir, B.; Walsh, T. R. A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation. Soft Matter 2016, 12, 2453-2464.

57

Buehler, M. J. Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 2008, 1, 59-67.

58

Zhang, S. T.; Fox, D. M.; Urbanc, B. Insights into formation and structure of aβ oligomers cross-linked via tyrosines. J. Phys. Chem. B 2017, 121, 5523-5535.

59

Gelain, F.; Bottai, D.; Vescovi, A.; Zhang, S. G. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 2006, 1, e119.

60

Lee, J. H.; Jung, H. W.; Kang, I. K.; Lee, H. B. Cell behaviour on polymer surfaces with different functional groups. Biomaterials 1994, 15, 705-711.

61

Cai, L.; Lu, J.; Sheen, V.; Wang, S. F. Optimal poly(L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions. Biomacromolecules 2012, 13, 1663-1674.

62

Tayi, A. S.; Pashuck, E. T.; Newcomb, C. J.; McClendon, M. T.; Stupp, S. I. Electrospinning bioactive supramolecular polymers from water. Biomacromolecules 2014, 15, 1323-1327.

63

Singh, G.; Bittner, A. M.; Loscher, S.; Malinowski, N.; Kern, K. Electrospinning of diphenylalanine nanotubes. Adv. Mater. 2008, 20, 2332-2336.

Video
nr-11-1-586_ESM_Video S1.mp4
nr-11-1-586_ESM_Video S2.mp4
File
nr-11-1-586_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 February 2017
Revised: 30 August 2017
Accepted: 31 August 2017
Published: 18 October 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

Work described and performed by R. P., G. S., and F. G. was funded by Fondazione Cariplo under Grant no. 2011-0352, by La Colonna Onlus, by the "Ricerca Corrente 2015-2016" funding granted by the Italian Ministry of Health and by the "5 x 1000" voluntary contributions. A. M. is supported by a fellowship granted by Vertical Onlus. Raman, XRD, FTIR and WAXS experiments were conducted at the Advanced Light Source and at the Molecular Foundry, at the Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science, under Contract No. DE-AC02-05CH11231. We thank Alice Nodari for her help in SAP production and QC tests.

Return