Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Heteroatom dopants can greatly modify the electronic and physical properties and catalytic performance of gold nanoclusters. In this study, we investigate the catalytic activity of [Au25-x(PET)18-xM]NH3 (PET = 2-phenylethanethiolate, and M = Cu, Co, Ni, and Zn) nanoclusters in aerobic alcohol oxidation. The [Au25-x(PET)18-xM]NH3 nanoclusters are thoroughly characterized by matrix assisted laser desorption ionization (MALDI) mass spectrometry, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma–mass spectrometry (ICP-MS). The XPS analyses suggest that the transition metals strongly interact with the gold atoms of the nanoclusters. The CeO2-supported nanoclusters show catalytic activity, based on the conversion of benzyl alcohol, in the order, [Au25-x(PET)18-xNi] > [Au25-x(PET)18-xCu] > [Au25-x(PET)18-xZn] > [Au25-x(PET)18-xCo]. Regarding product selectivity, the [Au25-x(PET)18-xZn] and [Au25-x(PET)18-xCo] catalysts preferably yield benzaldehyde, [Au25-x(PET)18-xCu] yields benzaldehyde and benzyl acid, and [Au25-x(PET)18-xNi] yields benzyl acid. The exposed metal atoms are considered as the catalytic active sites. Also, the catalytic performance (including activity and selectivity) of the [Au25-x(PET)18-xM] catalysts is greatly turned and mediated by the transition metal type.
Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Acc. Chem. Res. 2013, 46, 1673–1681.
Taketoshi, A.; Haruta, M. Size- and structure-specificity in catalysis by gold clusters. Chem. Lett. 2014, 43, 380–387.
Wittstock, A.; Wichmann, A.; Bäumert, M. Nanoporous gold as a platform for a building block catalyst. ACS Catal. 2012, 27, 2199–2215.
Stratakis, M.; Garcia, H. Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chem. Rev. 2012, 112, 4469–4506.
Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816–824.
Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.
Tyo, E. C.; Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 2015, 10, 577–588.
Li, G.; Jin, R. C. Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J. Am. Chem. Soc. 2014, 136, 11347–11354.
Yuan, X.; Goswami, N.; Mathews, L.; Yu, Y.; Xie, J. P. Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. Nano Res. 2015, 8, 3488–3495.
Li, G.; Jiang, D. E.; Liu, C.; Yu, C. L.; Jin, R. C. Oxidesupported atomically precise gold nanocluster for catalyzing Sonogashira cross-coupling. J. Catal. 2013, 306, 177–183.
Liu, C.; Zhang, J. Y.; Huang, J. H.; Zhang, C. L.; Hong, F.; Zhou, Y.; Li, G.; Haruta, M. Efficient aerobic oxidation of glucose to gluconic acid over activated carbon-supported gold clusters. ChemSusChem 2017, 10, 1976–1980.
Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285–300.
Yamazoe, S.; Kurashige, W.; Nobusada, K.; Negishi, Y.; Tsukuda, T. Preferential location of coinage metal dopants (M = Ag or Cu) in [Au25-xMx(SC2H4Ph)18]-(x-1) as determined by extended X-ray absorption fine structure and density functional theory calculations. J. Phys. Chem. C 2014, 118, 25284–25290.
Jiang, D. E.; Dai, S. From superatomic Au25(SR)- 18 to superatomic M@Au24(SR)18 q core-shell clusters. Inorg. Chem. 2009, 48, 2720–2722.
Mertens, P. G. N.; Vandezande, P.; Ye, X.; Poelman, H.; De Vos, D. E.; Vankelecom, I. F. J. Membrane-occluded goldpalladium nanoclusters as heterogeneous catalysts for the selective oxidation of alcohols to carbonyl compounds. Adv. Synth. Catal. 2008, 350, 1241–1247.
Kurashige, W.; Yamazoe, S.; Kanehira, K.; Tsukuda, T.; Negishi, Y. Selenolate-protected Au38 nanoclusters: Isolation and structural characterization. J. Phys. Chem. Lett. 2013, 4, 3181–3185.
Qian, H. F.; Jiang, D. E.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. C. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 2012, 134, 16159–16162.
Li, G.; Jin, R. C. Atomic level tuning of the catalytic properties: Doping effects of 25-atom bimetallic nanoclusters on styrene oxidation. Catal. Today 2016, 278, 187–191.
Li, W. L.; Liu, C.; Abroshan, H.; Ge, Q. J.; Yang, X. J.; Xu, H. Y.; Li, G. Catalytic CO oxidation using bimetallic MxAu25–x clusters: A combined experimental and computational study on doping effects. J. Phys. Chem. C 2016, 120, 10261–10267.
Li, G.; Abroshan, H.; Chen, Y. X.; Jin, R. C.; Kim, H. J. Experimental and mechanistic understanding of aldehyde hydrogenation using Au25 nanoclusters with lewis acids: Unique sites for catalytic reactions. J. Am. Chem. Soc. 2015, 137, 14295–14304.
Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.
Tolman, C. A.; Riggs, W. M.; Linn, W. J.; King, C. M.; Wendt, R. C. Electron spectroscopy for chemical analysis of nickel compounds. Inorg. Chem. 1973, 12, 2770–2778.
Gaarenstroom, S. W.; Winograd, N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 1977, 67, 3500–3506.
Seals, R. D.; Alexander, R.; Taylor, L. T.; Dillard, J. G. Core electron binding energy study of group IIb-VIIa compounds. Inorg. Chem. 1973, 12, 2485–2487.
Liu, C.; Abroshan, H.; Yan, C. Y.; Li, G.; Haruta, M. One-pot synthesis of Au11(PPh2Py)7Br3 for the highly chemoselective hydrogenation of nitrobenzaldehyde. ACS Catal. 2016, 6, 92–99.
Wu, Z. L.; Jiang, D. E.; Mann, A. K. P.; Mullins, D. R.; Qiao, Z. A.; Allard, L. F.; Zeng, C. J.; Jin, R. C.; Overbury, S. H. Thiolate ligands as a double-edged sword for CO oxidation on CeO2 supported Au25(SCH2CH2Ph)18 nanoclusters. J. Am. Chem. Soc. 2014, 136, 6111–6122.
Lopez-Acevedo, O.; Kacprzak, K. A.; Akola, J.; Häkkinen, H. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat. Chem. 2010, 2, 329–334.
Abroshan, H.; Li, G.; Lin, J. Z.; Kim, H. J.; Jin, R. C. Molecular mechanism for the activation of Au25(SCH2CH2Ph)18 nanoclusters by imidazolium-based ionic liquids for catalysis. J. Catal. 2016, 337, 72–79.
Yoskamtorn, T.; Yamazoe, S.; Takahata, Y.; Nishigaki, J.; Thivasasith, A.; Limtrakul, J.; Tsukuda, T. Thiolate-mediated selectivity control in aerobic alcohol oxidation by porous carbon-supported Au25 clusters. ACS Catal. 2014, 4, 3696–3700.
Chen, Y. D.; Liu, C.; Abroshan, H.; Li, Z. M.; Wang, J.; Li, G.; Haruta, M. Phosphine/phenylacetylide-ligated Au clusters for multicomponent coupling reactions. J. Catal. 2016, 340, 287–294.
Robinson, R. D.; Spanier, J. E.; Zhang, F.; Chan, S. W.; Herman, I. P. Visible thermal emission from sub-band-gap laser excited cerium dioxide particles. J. Appl. Phys. 2002, 92, 1936–1941.
Pushkarev, V. V.; Kovalchuk, V. I.; d'Itri, J. L. Probing Defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B 2004, 108, 5341–5348.
Wu, Z. L.; Li, M. J.; Howe, J.; Meyer III, H. M.; Overbury, S. H. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010, 26, 16595–16606.
Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.