Journal Home > Volume 11 , Issue 4

Nanostructured TiO2 has applications in solar cells, photocatalysts, and fast-charging, safe lithium ion batteries (LIBs). To meet the demand of high-capacity and high-rate LIBs with TiO2-based anodes, it is important to fine-tune the nanoarchitecture using a well-controlled synthesis approach. Herein, we report a new approach that involves epitaxial growth combined with topotactic conversion to synthesize a unique type of 3D TiO2 nanoarchitecture that is assembled by well-oriented ultrathin nanobelts. The whole nanoarchitecture displays a 3D Chinese knot-like morphology; the core consists of robust perpendicular interwoven nanobelts and the shell is made of extended nanobelts. The nanobelts oriented in three perpendicular A[001] directions facilitate Li+ penetration and diffusion. Abundant anatase/TiO2-B interfaces provide a large amount of interfacial pseudocapacitance. A high and stable capacity of 130 mA·h·g-1 was obtained after 3, 000 cycles at 10 A·g-1 (50 C), and the high-rate property of our material was greater than that of many recently reported high-rate TiO2 anodes. Our result provides, not only a novel synthesis strategy, but also a new type of 3D anatase TiO2 anode that may be useful in developing long-lasting and fast-charging batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin nanobelts-assembled Chinese knot-like 3D TiO2 for fast and stable lithium storage

Show Author's information Qili Wu1Shiman He1Xianfeng Yang2Jingling Yang1Gaoren Li1Yuying Meng1Shengfu Tong1( )Liqiang Mai3( )Mingmei Wu1( )
MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat-Sen UniversityGuangzhou510275China
Analytical and Testing CenterSouth China University of TechnologyGuangzhou510640China
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China

Abstract

Nanostructured TiO2 has applications in solar cells, photocatalysts, and fast-charging, safe lithium ion batteries (LIBs). To meet the demand of high-capacity and high-rate LIBs with TiO2-based anodes, it is important to fine-tune the nanoarchitecture using a well-controlled synthesis approach. Herein, we report a new approach that involves epitaxial growth combined with topotactic conversion to synthesize a unique type of 3D TiO2 nanoarchitecture that is assembled by well-oriented ultrathin nanobelts. The whole nanoarchitecture displays a 3D Chinese knot-like morphology; the core consists of robust perpendicular interwoven nanobelts and the shell is made of extended nanobelts. The nanobelts oriented in three perpendicular A[001] directions facilitate Li+ penetration and diffusion. Abundant anatase/TiO2-B interfaces provide a large amount of interfacial pseudocapacitance. A high and stable capacity of 130 mA·h·g-1 was obtained after 3, 000 cycles at 10 A·g-1 (50 C), and the high-rate property of our material was greater than that of many recently reported high-rate TiO2 anodes. Our result provides, not only a novel synthesis strategy, but also a new type of 3D anatase TiO2 anode that may be useful in developing long-lasting and fast-charging batteries.

Keywords: TiO2, three‐dimensional (3D) nanoarchitectures, ultrathin nanobelts, lithium ion storage, ultrahigh rate battery

References(69)

1

Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.

2

Liu, X. F.; Tong, S. F.; Dai, C. G.; He, P.; Zhou, H. S. Synthesis of quasi-spherical micro-size lithium titanium oxide by an easy sol-gel method. J. Solid State Electrochem. 2015, 19, 299–305.

3

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

4

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

5

Balogun, M. -S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

6

Wang, Y. H.; Zeng, J. R.; Cui, X. Q.; Zhang, L. J.; Zheng, G. F. Separator-integrated, reversely connectable symmetric lithium-ion battery. Small 2016, 12, 1091–1097.

7

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

8

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

9

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

10

Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414.

11

Gordon, I. A. J.; Grugeon, S.; Takenouti, H.; Tribollet, B.; Armand, M.; Davoisne, C.; Débart, A.; Laruelle, S. Electrochemical impedance spectroscopy response study of a commercial graphite-based negative electrode for Li-ion batteries as function of the cell state of charge and ageing. Electrochim. Acta 2017, 223, 63–73.

12

Wang, C.; Wang, F. X.; Zhao, Y. J.; Li, Y. H.; Yue, Q.; Liu, Y. P.; Liu, Y.; Elzatahry, A. A.; Al-Enizi, A.; Wu, Y. P. et al. Hollow TiO2–X porous microspheres composed of well-crystalline nanocrystals for high-performance lithium-ion batteries. Nano Res. 2016, 9, 165–173.

13

Yang, J. L.; Wu, Q. L.; Yang, X. F.; He, S. M.; Khan, J.; Meng, Y. Y.; Zhu, X. M.; Tong, S. F.; Wu, M. M. Chestnut-like TiO2@α-Fe2O3 core–shell nanostructures with abundant interfaces for efficient and ultralong life lithium-ion storage. ACS Appl. Mater. Interfaces 2017, 9, 354–361.

14

You, H. L.; Wu, Q. L.; Li, J. D.; He, S. M.; Li, X. H.; Yang, X. F.; Yang, J. L.; Meng, Y. Y.; Tong, S. F.; Wu, M. M. Hollow nanocubes constructed from <001> oriented anatase TiO2 nanoarrays: Topotactic conversion and fast lithium-ion storage. CrystEngComm 2017, 19, 2456–2463.

DOI
15

Wu, Y. Z.; Meng, J. S.; Li, Q.; Niu, C. J.; Wang, X. P.; Yang, W.; Li, W.; Mai, L. Q. Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res. 2017, 10, 2364–2376.

16

Wang, H. G.; Wang, G. S.; Yuan, S.; Ma, D. L.; Li, Y.; Zhang, Y. Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures with improved lithium-ion battery performance over wide temperature range. Nano Res. 2015, 8, 1659–1668.

17

Dai, C. G.; Ye, J.; Zhao, S. Y.; He, P.; Zhou, H. S. Fabrication of high-energy Li-ion cells with Li4Ti5O12 microspheres as anode and 0.5Li2MnO3·0.5LiNi0.4Co0.2Mn0.4O2 microspheres as cathode. Chem. Asian J. 2016, 11, 1273–1280.

18

Ai, W.; Jiang, J.; Zhu, J. H.; Fan, Z. X.; Wang, Y. L.; Zhang, H.; Huang, W.; Yu, T. Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion batteries. Adv. Energy Mater. 2015, 5, 1500559.

19

Ai, W.; Luo, Z. M.; Jiang, J.; Zhu, J. H.; Du, Z. Z.; Fan, Z. X.; Xie, L. H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and sulfur codoped graphene: Multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 2014, 26, 6186–6192.

20

Lui, G.; Li, G.; Wang, X. L.; Jiang, G. P.; Lin, E.; Fowler, M.; Yu, A. P.; Chen, Z. W. Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode–electrolyte interaction in high-power Li-ion batteries. Nano Energy 2016, 24, 72–77.

21

Chu, S. Y.; Zhong, Y. J.; Cai, R.; Zhang, Z. B.; Wei, S. Y.; Shao, Z. P. Mesoporous and nanostructured TiO2 layer with ultra-high loading on nitrogen-doped carbon foams as flexible and free-standing electrodes for lithium-ion batteries. Small 2016, 12, 6724–6734.

22

Ren, Y.; Hardwick, L. J.; Bruce, P. G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew. Chem., Int. Ed. 2010, 49, 2570–2574.

23

Huang, S. Z.; Zhang, L.; Lu, X. Y.; Liu, L. F.; Liu, L. X.; Sun, X. L.; Yin, Y.; Oswald, S.; Zou, Z. Y.; Ding, F. et al. Tunable pseudocapacitance in 3D TiO2-δ nanomembranes enabling superior lithium storage performance. ACS Nano 2017, 11, 821–830.

24

Chattopadhyay, S.; Maiti, S.; Das, I.; Mahanty, S.; De, G. Electrospun TiO2–rGO composite nanofibers with ordered mesopores by molecular level assembly: a high performance anode material for lithium-ion batteries. Adv. Mater. Interfaces 2016, 3, 1600761.

25

Zhang, Y. Y.; Tang, Y. X.; Li, W. L.; Chen, X. D. Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat 2016, 2, 764–775.

26

Kavan, L. Lithium insertion into TiO2 (anatase): Electrochemistry, Raman spectroscopy, and isotope labeling. J Solid State Electrochem. 2014, 18, 2297–2306.

27

Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

28

Guo, Y. G.; Hu, Y. S.; Maier, J. Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem. Commun. 2006, 2783–2785.

29

Zhao, Z. H.; Tian, J.; Sang, Y. H.; Cabot, A.; Liu, H. Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 2015, 27, 2557–2582.

30

Chen, J.; Zhang, Y.; Zou, G. Q.; Huang, Z. D.; Li, S. M.; Liao, H. X.; Wang, J. F.; Hou, H. S.; Ji, X. B. Size-tunable olive-like anatase TiO2 coated with carbon as superior anode for sodium-ion batteries. Small 2016, 12, 5554–5563.

31

Jiang, C. H.; Wei, M. D.; Qi, Z. M.; Kudo, T.; Honma, I.; Zhou, H. S. Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources 2007, 166, 239–243.

32

Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: Emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.

33

Zhao, K. N.; Zhang, L.; Xia, R.; Dong, Y. F.; Xu, W. W.; Niu, C. J.; He, L.; Yan, M. Y.; Qu, L. B.; Mai, L. Q. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 2016, 12, 588–594.

34

Tian, M.; Wang, W.; Liu, Y.; Jungjohann, K. L.; Thomas Harris, C.; Lee, Y. C.; Yang, R. G. A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 2015, 11, 500–509.

35

Zhu, Q.; Wu, P.; Zhang, J.; Zhang, W.; Zhou, Y.; Tang, Y.; Lu, T. Cyanogel-derived formation of 3D nanoporous SnO2–MxOy (M=Ni, Fe, Co) hybrid networks for highperformance lithium storage. ChemSusChem 2015, 8, 131–137.

36

An, Q. Y.; Wei, Q. L.; Zhang, P. F.; Sheng, J. Z.; Hercule, K. M.; Lv, F.; Wang, Q. Q.; Wei, X. J.; Mai, L. Q. Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries. Small 2015, 11, 2654–2660.

37

Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

38

Hengerer, R.; Kavan, L.; Krtil, P.; Grätzel, M. Orientation dependence of charge-transfer processes on TiO2 (anatase) single crystals. J. Electrochem. Soc. 2000, 147, 1467–1472.

39

Wu, Q. L.; Yang, X. F.; Zhou, W. Z.; Gao, Q.; Lu, F. Q.; Zhuang, J. L.; Xu, X. F.; Wu, M. M.; Fan, H. J. "Isofacet" anatase TiO2 microcages: Topotactic synthesis and ultrastable Li-ion storage. Adv. Mater. Interfaces 2015, 2, 1500210.

40

Wu, Q. L.; Xu, J. G.; Yang, X. F.; Lu, F. Q.; He, S. M.; Yang, J. L.; Fan, H. J.; Wu, M. M. Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: Capacity enhancement by phase boundaries. Adv. Energy Mater. 2015, 5, 1401756.

41

Yang, X. F.; Karthik, C.; Li, X. Y.; Fu, J. X.; Fu, X. H.; Liang, C. L.; Ravishankar, N.; Wu, M. M.; Ramanath, G. Oriented nanocrystal arrays of selectable polymorphs by chemical sculpture. Chem. Mater. 2009, 21, 3197–3201.

42

Tsai, C. C.; Teng, H. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater. 2006, 18, 367–373.

43

Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans. 2003, 3898–3901.

44

Wu, Q. L.; Yang, X. F.; Liu, J.; Nie, X.; Huang, Y. L.; Wen, Y. P.; Khan, J.; Khan, W. U.; Wu, M. M.; An, T. C. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 17730–17739.

45

Chen, Q.; Mogilevsky, G.; Wagner, G. W.; Forstater, J.; Kleinhammes, A.; Wu, Y. Active anatase (001)-like surface of hydrothermally synthesized titania nanotubes. Chem. Phys. Lett. 2009, 482, 134–138.

46

Mogilevsky, G.; Chen, Q.; Kulkarni, H.; Kleinhammes, A.; Mullins, W. M.; Wu, Y. Layered nanostructures of delaminated anatase: Nanosheets and nanotubes. J. Phys. Chem. C 2008, 112, 3239–3246.

47

Lu, H. Q.; Zhao, J. H.; Li, L.; Zheng, J. F.; Zhang, L. X.; Gong, L. M.; Wang, Z. J.; Zhu, Z. P. A systematic study on evolution mechanism of titanate nanostructures in the hydrothermal process. Chem. Phys. Lett. 2011, 508, 258–264.

48

Nakahira, A.; Kubo, T.; Numako, C. Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process. Inorg. Chem. 2010, 49, 5845–5852.

49

Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307–1311.

50

Zhang, H. B.; Cao, L. X.; Liu, W.; Su, G. A new ion exchange behavior of protonated titanate nanotubes after deprotonation and the study on their morphology and optical properties. Appl. Surf. Sci. 2012, 259, 610–615.

51

Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, 2807–2824.

52

Kim, S.; Kim, M.; Hwang, S. H.; Lim, S. K. Effects of hydrothermal temperature and acid concentration on the transition from titanate to titania. J. Ind. Eng. Chem. 2012, 18, 1141–1148.

53

Wang, C. H.; Zhang, X. T.; Zhang, Y. L.; Jia, Y.; Yang, J. K.; Sun, P. P.; Liu, Y. C. Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. J. Phys. Chem. C 2011, 115, 22276–22285.

54

Li, N.; Zhang, L. D.; Chen, Y. Z.; Fang, M.; Zhang, J. X.; Wang, H. M. Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Adv. Funct. Mater. 2012, 22, 835–841.

55

Kim, C.; Buonsanti, R.; Yaylian, R.; Milliron, D. J.; Cabana, J. Carbon-free TiO2 battery electrodes enabled by morphological control at the nanoscale. Adv. Energy Mater. 2013, 3, 1286–1291.

56

Rhee, O.; Lee, G.; Choi, J. Highly ordered TiO2 microcones with high rate performance for enhanced lithium-ion storage. ACS Appl. Mater. Interfaces 2016, 8, 14558–14563.

57

Tang, Y. X.; Zhang, Y. Y.; Deng, J. Y.; Wei, J. Q.; Tam, H. L.; Chandran, B. K.; Dong, Z. L.; Chen, Z.; Chen, X. D. Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 2014, 26, 6111–6118.

58

Wang, Z. Y.; Lou, X. W. TiO2 nanocages: Fast synthesis, interior functionalization and improved lithium storage properties. Adv. Mater. 2012, 24, 4124–4129.

59

Yue, W. B.; Xu, X. X.; Irvine, J. T. S.; Attidekou, P. S.; Liu, C.; He, H. Y.; Zhao, D. Y.; Zhou, W. Z. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem. Mater. 2009, 21, 2540–2546.

60

Chen, J. S.; Lou, X. W. Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction. Electrochem. Commun. 2009, 11, 2332–2335.

61

Uchaker, E.; Cao, G. Z. Mesocrystals as electrode materials for lithium-ion batteries. Nanotoday 2014, 9, 499–524.

62

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

63

Han, H.; Song, T.; Lee, E. K.; Devadoss, A.; Jeon, Y.; Ha, J.; Chung, Y. C.; Choi, Y. M.; Jung, Y. G.; Paik, U. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano 2012, 6, 8308–8315.

64

Wang, J.; Ran, R.; Tade, M. O.; Shao, Z. P. Self-assembled mesoporous TiO2/carbon nanotube composite with a threedimensional conducting nanonetwork as a high-rate anode material for lithium-ion battery. J. Power Sources 2014, 254, 18–28.

65

Yi, T. F.; Xie, Y.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhou, A. N.; Ye, M. F. Advanced electrochemical properties of Mo-doped Li4Ti5O12 anode material for power lithium ion battery. RSC Adv. 2012, 2, 3541–3547.

66

Cheng, Y. H.; Chen, Z.; Wu, H. B.; Zhu, M. F.; Lu, Y. F. Ionic liquid-assisted synthesis of TiO2-carbon hybrid nanostructures for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1338–1346.

67

Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.

68

Li, Y. M.; Shen, J. R.; Li, J. J.; Liu, S. M.; Yu, D. L.; Xu, R. C.; Fu, W. F.; Lv, X. J. Constructing a novel strategy for carbon-doped TiO2 multiple-phase nanocomposites toward superior electrochemical performance for lithium ion batteries and the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 7055–7063.

69

Zhu, H. W.; Jing, Y. K.; Pal, M.; Liu, Y. P.; Liu, Y.; Wang, J. X.; Zhang, F.; Zhao, D. Y. Mesoporous TiO2@N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol-gel process for superior lithium storage. Nanoscale 2017, 9, 1539–1546.

File
12274_2017_1829_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 June 2017
Revised: 26 July 2017
Accepted: 29 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This research was supported financially by the National Natural Science Foundation of China (NSFC) (Nos. 51672315, U1301242, 21271190, and 21403106), the government of Guangzhou city for an international joint-project (No. 201704030020), the Government of Guangdong Province for NSF (No. S2012020011113) and the provincial Ministry of Cooperative funded special funds (Nos. 2013A090100010, 2016B090932005, and 2015B090927002), the Fundamental Research Funds for the Central Universities (No. 16lgpy18). The authors acknowledge Prof. Hong Jin Fan from Nanyang Technological University for helpful discussions.

Return