Journal Home > Volume 11 , Issue 4

Hybrid or composite heterostructured electrode materials have been widely studied for their potential application in electrochemical energy storage. Whereas their physical or chemical properties could be affected significantly by modulating the heterogeneous interface, the underlying mechanisms are not yet fully understood. In this work, we fabricated an electrochemical energy storage device with a MoS2 nanosheet/MnO2 nanowire heterostructure and designed two charge/discharge channels to study the effect of the heterogeneous interface on the energy storage performances. Electrochemical measurements show that a capacity improvement of over 50% is achieved when the metal current collector was in contact with the MnO2 instead of the MoS2 side. We propose that this enhancement is due to the unidirectional conductivity of the MoS2/MnO2 heterogeneous interface, resulting from the unimpeded electrical transport in the MnO2-MoS2 channel along with the blocking effect on the electron transport in the MoS2-MnO2 channel, which leads to reaction kinetics optimization. The present study thus provides important insights that will improve our understanding of heterostructured electrode materials for electrochemical energy storage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage

Show Author's information Xiaobin Liao1Yunlong Zhao1,2Junhui Wang1Wei Yang1Lin Xu1Xiaocong Tian1Yi Shuang1Kwadwo Asare Owusu1Mengyu Yan1( )Liqiang Mai1,3( )
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMassachusetts02138USA
Department of ChemistryUniversity of CaliforniaBerkeleyCalifornia94720USA

Abstract

Hybrid or composite heterostructured electrode materials have been widely studied for their potential application in electrochemical energy storage. Whereas their physical or chemical properties could be affected significantly by modulating the heterogeneous interface, the underlying mechanisms are not yet fully understood. In this work, we fabricated an electrochemical energy storage device with a MoS2 nanosheet/MnO2 nanowire heterostructure and designed two charge/discharge channels to study the effect of the heterogeneous interface on the energy storage performances. Electrochemical measurements show that a capacity improvement of over 50% is achieved when the metal current collector was in contact with the MnO2 instead of the MoS2 side. We propose that this enhancement is due to the unidirectional conductivity of the MoS2/MnO2 heterogeneous interface, resulting from the unimpeded electrical transport in the MnO2-MoS2 channel along with the blocking effect on the electron transport in the MoS2-MnO2 channel, which leads to reaction kinetics optimization. The present study thus provides important insights that will improve our understanding of heterostructured electrode materials for electrochemical energy storage.

Keywords: electrochemical performance, heterostructure, energy storage, electrical transport, nanoscale device

References(56)

1

Palacín, M. R.; De Guibert, A. Why do batteries fail? Science 2016, 351, 1253292.

2

Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531-5538.

3

Xiong, Q. Q.; Tu, J. P.; Xia, X. H.; Zhao, X. Y.; Gu, C. D.; Wang, X. L. A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: A new class of anode for high-performance lithium-ion batteries. Nanoscale 2013, 5, 7906-7912.

4

Asakura, D.; Li, C. H.; Mizuno, Y.; Okubo, M.; Zhou, H. S.; Talham, D. R. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 2013, 135, 2793-2799.

5

Kim, D. W.; Hwang, I. S.; Kwon, S. J.; Kang, H. Y.; Park, K. S.; Choi, Y. J.; Choi, K. J.; Park, J. G. Highly conductive coaxial SnO2-In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett. 2007, 7, 3041-3045.

6

Peng, P.; Milliron, D. J.; Hughes, S. M.; Johnson, J. C.; Alivisatos, A. P.; Saykally, R. J. Femtosecond spectroscopy of carrier relaxation dynamics in type Ⅱ CdSe/CdTe tetrapod heteronanostructures. Nano Lett. 2005, 5, 1809-1813.

7

Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T. et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439-2445.

8

Zhou, S.; Liu, X. H.; Wang, D. W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860-863.

9

Gu, X.; Chen, L.; Ju, Z. C.; Xu, H. Y.; Yang, J.; Qian, Y. T. Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 4049-4056.

10

Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190-195.

11

Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Materi. 2015, 25, 1393-1403.

12

Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

13

Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151-2157.

14

Li, Y. B.; Zhang, J. S.; Zheng, G. Y.; Sun, Y. M.; Hong, S. S.; Xiong, F.; Wang, S.; Lee, H. R.; Cui, Y. Lateral and vertical two-dimensional layered topological insulator heterostructures. ACS Nano 2015, 9, 10916-10921.

15

Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71-76.

16

Xu, L.; Jiang, Z.; Mai, L. Q.; Qing, Q. Multiplexed free-standing nanowire transistor bioprobe for intracellular recording: A general fabrication strategy. Nano Lett. 2014, 14, 3602-3607.

17

Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 2015, 15, 6777-6784.

18

Yang, Y.; Xie, C.; Ruffo, R.; Peng, H. L.; Kim, D. K.; Cui, Y. Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 2009, 9, 4109-4114.

19

Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515-1520.

20

Fei, L. F.; Lei, S. J.; Zhang, W. B.; Lu, W.; Lin, Z. Y.; Lam, C. H.; Chai, Y.; Wang, Y. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7, 12206.

21

Mai, L. Q.; Dong, Y. J.; Xu, L.; Han, C. H. Single nanowire electrochemical devices. Nano Lett. 2010, 10, 4273-4278.

22

Hu, P.; Yan, M. Y.; Wang, X. P.; Han, C. H.; He, L.; Wei, X. J.; Niu, C. J.; Zhao, K. N.; Tian, X. C.; Wei, Q. L. et al. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices. Nano Lett. 2016, 16, 1523-1529.

23

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnil. 2014, 9, 682-686.

24

Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534-540.

25

Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837-3848.

26

Cao, L. J.; Yang, S. B.; Gao, W.; Liu, Z.; Gong, Y. J.; Ma, L. L.; Shi, G.; Lei, S. D.; Zhang, Y. H.; Zhang, S. T. et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 2013, 9, 2905-2910.

27

Xiao, J.; Choi, D.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 2010, 22, 4522-4524.

28

Zhao, C. Y.; Kong, J. H.; Yao, X. Y.; Tang, X. S.; Dong, Y. L.; Phua, S. L.; Lu, X. H. Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6392-6398.

29

Cao, X. H.; Shi, Y. M.; Shi, W. H.; Rui, X. H.; Yan, Q. Y.; Kong, J.; Zhang, H. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433-3438.

30

Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252-4254.

31

Oakes, L.; Carter, R.; Hanken, T.; Cohn, A. P.; Share, K.; Schmidt, B.; Pint, C. L. Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 2016, 7, 11796.

32

Tompsett, D. A.; Islam, M. S. Electrochemistry of hollandite α-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem. Mater. 2013, 25, 2515-2526.

33

Ling, C.; Zhang, R. G.; Arthur, T. S.; Mizuno, F. How general is the conversion reaction in Mg battery cathode: A case study of the magnesiation of α-MnO2. Chem. Mater. 2015, 27, 5799-5807.

34

Khan, Z.; Park, S.; Hwang, S. M.; Yang, J. C.; Lee, Y.; Song, H.; Kim, Y.; Ko, H. Hierarchical urchin-shaped α-MnO2 on graphene-coated carbon microfibers: A binder-free electrode for rechargeable aqueous Na-air battery. NPG Asia Mater. 2016, 8, e294.

35

Shen, X. W.; Qian, T.; Zhou, J. Q.; Xu, N.; Yang, T. Z.; Yan, C. L. Highly flexible full lithium batteries with self-knitted α-MnO2 fabric foam. ACS Appl. Mater. Interfaces 2015, 45, 25298-25305.

36

Lu, X. Y.; Deng, J. W.; Si, W. P.; Sun, X. L.; Liu, X. H.; Liu, B.; Liu, L. F.; Oswald, S.; Baunack, S.; Grafe, H. J. et al. High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes. Adv. Sci. 2015, 2, 1500113.

37

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

38

Kwak, J. Y.; Hwang, J.; Calderon, B.; Alsalman, H.; Munoz, N.; Schutter, B.; Spencer, M. G. Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts. Nano Lett. 2014, 14, 4511-4516.

39

Lee, C. G.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

40

Windom, B. C.; Sawyer, W.; Hahn, D. W. A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 2011, 42, 301-310.

41

Gao, T.; Fjellvåg, H.; Norby, P. A comparison study on Raman scattering properties of α- and β-MnO2. Anal. Chim. Acta 2009, 648, 235-239.

42

Julien, C. M.; Massot, M.; Poinsignon, C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim. Acta A 2004, 60, 689-700.

43

Sinha, A. K.; Basu, M.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Thermodynamic and kinetics aspects of spherical MnO2 nanoparticle synthesis in isoamyl alcohol: An ex situ study of particles to one-dimensional shape transformation. J. Phys. Chem. C 2010, 114, 21173-21183.

44

Mai, L. Q.; Minhas-Khan, A.; Tian, X. C.; Hercule, K. M.; Zhao, Y. L.; Lin, X.; Xu, X. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat. Commun. 2013, 4, 2923.

45

Ren, Y.; Ma, Z.; Bruce, P. G. Ordered mesoporous metal oxides: Synthesis and applications. Chem. Soc. Rev. 2012, 41, 4909-4927.

46

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.

47

Sathiya, M.; Prakash, A.; Ramesha, K.; Tarascon, J. M.; Shukla, A. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 2011, 133, 16291-16299.

48

Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 2012, 12, 2559-2567.

49

Wang, X. P.; Niu, C. J.; Meng, J. S.; Hu, P.; Xu, X. M.; Wei, X. J.; Zhou, L.; Zhao, K. N.; Luo, W.; Yan, M. Y. et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 2015, 5, 1500716.

50

Cummins, D. R.; Martinez, U.; Sherehiy, A.; Kappera, R.; Martinez-Garcia, A.; Schulze, R. K.; Jasinski, J.; Zhang, J.; Gupta, R.; Lou, J. et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat. Commun. 2016, 7, 11857.

51

Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63-67.

52

Ruetschi, P. Cation-vacancy model for MnO2. J. Electrochem. Soc. 1984, 131, 2737-2744.

53

Ruetschi, P.; Giovanoli, R. Cation vacancies in MnO2 and their influence on electrochemical reactivity. J. Electrochem. Soc. 1988, 135, 2663-2669.

54

Ruetschi, P. Influence of cation vacancies on the electrode potential of MnO2. J. Electrochem. Soc. 1988, 135, 2657-2663.

55

Bogusz, A.; Bürger, D.; Skorupa, I.; Schmidt, O. G.; Schmidt, H. Bipolar resistive switching in YMnO3/Nb: SrTiO3 PN-heterojunctions. Nanotechnology. 2016, 45, 455201.

56

Sutar, S.; Agnihotri, P.; Comfort, E.; Taniguchi, T.; Watanabe, K.; Lee, J. U. Reconfigurable p-n junction diodes and the photovoltaic effect in exfoliated MoS2 films. Appl. Phys. Lett. 2014, 104, 122104.

File
12274_2017_1826_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 May 2017
Revised: 20 August 2017
Accepted: 29 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202603), the National Basic Research Program of China (No. 2013CB934103), the Programme of Introducing Talents of Discipline to Universities (No. B17034), the National Natural Science Foundation of China (No. 51521001), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), and the Fundamental Research Funds for the Central Universities (WUT: 2016III001, 2017III009), Prof. Liqiang Mai gratefully acknowledged financial support from China Scholarship Council (No. 201606955096).

Return