Journal Home > Volume 11 , Issue 4

High performance methanol oxidation reaction (MOR) catalysts are critical to the performance of attractive, direct methanol fuel cells. Here, we use surface controlled PtNi alloy nanoparticles as model catalysts to study the MOR mechanism and give further guidance to the design of new high performance MOR catalysts. The enhanced MOR activity of PtNi alloy was mainly attributed to the enhanced OH adsorption owing to surface Ni sites. This suggests that the MOR undergoes the Langmuir–Hinshelwood mechanism, whereby adsorbed CO is removed with the assistance of adsorbed OH. Within the PtNi catalyst, Pt provides methanol adsorption sites (in which methanol is converted to adsorbed CO) and Ni provides OH adsorption sites. The optimized Pt–Ni ratio for MOR was found to be 1:1. This suggests that bifunctional catalysts with both CO and OH adsorption sites can lead to highly active MOR catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles

Show Author's information Siqi LuHuiming LiJingyao SunZhongbin Zhuang( )
State Key Lab of Organic-Inorganic CompositesBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing Key Lab of Energy Environmental CatalysisBeijing University of Chemical TechnologyBeijing100029China

Abstract

High performance methanol oxidation reaction (MOR) catalysts are critical to the performance of attractive, direct methanol fuel cells. Here, we use surface controlled PtNi alloy nanoparticles as model catalysts to study the MOR mechanism and give further guidance to the design of new high performance MOR catalysts. The enhanced MOR activity of PtNi alloy was mainly attributed to the enhanced OH adsorption owing to surface Ni sites. This suggests that the MOR undergoes the Langmuir–Hinshelwood mechanism, whereby adsorbed CO is removed with the assistance of adsorbed OH. Within the PtNi catalyst, Pt provides methanol adsorption sites (in which methanol is converted to adsorbed CO) and Ni provides OH adsorption sites. The optimized Pt–Ni ratio for MOR was found to be 1:1. This suggests that bifunctional catalysts with both CO and OH adsorption sites can lead to highly active MOR catalysts.

Keywords: methanol oxidation reaction (MOR), surface structure, OH adsorption, Pt alloy catalysts

References(48)

1

Gasteiger, H. A.; Markovic, N.; Ross Jr, P. N.; Cairns, E. J. Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J. Phys. Chem. 1993, 97, 12020-12029.

2

Aricò, A. S.; Srinivasan, S.; Antonucci, V. DMFCs: From fundamental aspects to technology development. Fuel Cells 2001, 1, 133-161.

DOI
3

Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736-2753.

4

Kang, Y. Q.; Li, F. M.; Li, S. N.; Ji, P. J.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 2016, 9, 3893-3902.

5

Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397-12429.

6

Cai, B.; Wen, D.; Liu, W.; Herrmann, A. K.; Benad, A.; Eychmuller, A. Function-led design of aerogels: Self-assembly of alloyed PdNi hollow nanospheres for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 13101-13105.

7

Zheng, J. N.; Li, S. S.; Ma, X. H.; Chen, F. Y.; Wang, A. J.; Chen, J. R.; Feng, J. J. Popcorn-like PtAu nanoparticles supported on reduced graphene oxide: Facile synthesis and catalytic applications. J. Mater. Chem. A 2014, 2, 8386-8395.

8

Yuwen, L. H.; Xu, F.; Xue, B.; Luo, Z. M.; Zhang, Q.; Bao, B. Q.; Su, S.; Weng, L. X.; Huang, W.; Wang, L. H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762-5769.

9

Zhao, W. Y.; Huang, D. B.; Yuan, Q.; Wang, X. Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks. Nano Res. 2016, 9, 3066-3074.

10

Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329-343.

11

Huang, H. J.; Chen, H. Q.; Sun, D. P.; Wang, X. Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. J. Power Sources 2012, 204, 46-52.

12

Gu, Y. J.; Wong, W. T. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation. Langmuir 2006, 22, 11447-11452.

13

Lin, Y. H.; Cui, X. L.; Yen, C. H.; Wai, C. M. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: A novel electrocatalyst for direct methanol fuel cells. Langmuir 2005, 21, 11474-11479.

14

Fu, G. T.; Zhang, Q.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts. Nano Res. 2015, 8, 3963-3971.

15

Couto, A.; Rincón, A.; Pérez, M. C.; Gutiérrez, C. Adsorption and electrooxidation of carbon monoxide on polycrystalline platinum at pH 0.3-13. Electrochim. Acta 2001, 46, 1285-1296.

16

Farias, M. J. S.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. J. Electroanal. Chem. 2014, 716, 16-22.

17

Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science 1998, 280, 1735-1737.

18

Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95-110.

19

Spendelow, J. S.; Lu, G. Q.; Kenis, P. J. A.; Wieckowski, A. Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. J. Electroanal. Chem. 2004, 568, 215-224.

20

Chen, C. S.; Pan, F. M.; Yu, H. J. Electrocatalytic activity of Pt nanoparticles on a karst-like Ni thin film toward methanol oxidation in alkaline solutions. Appl. Catal., B-Environ. 2011, 104, 382-389.

21

Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part Ⅲ. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 1975, 60, 275-283.

22

Chetty, R.; Kundu, S.; Xia, W.; Bron, M.; Schuhmann, W.; Chirila, V.; Brandl, W.; Reinecke, T.; Muhler, M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim. Acta 2009, 54, 4208-4215.

23

Li, L.; Xing, Y. C. Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J. Phys. Chem. C 2007, 111, 2803-2808.

24

Yang, H.; Coutanceau, C.; Léger, J. M.; Alonso-Vante, N.; Lamy, C. Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles. J. Electroanal. Chem. 2005, 576, 305-313.

25

Jiang, Q.; Jiang, L. H.; Wang, S. L.; Qi, J.; Sun, G. Q. A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media. Catal. Commun. 2010, 12, 67-70.

26

Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925-1929.

27

Guo, X.; Guo, D. J.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium. Electrochem. Commun. 2008, 10, 1748-1751.

28

Ren, F. F.; Wang, C. Q.; Zhai, C. Y.; Jiang, F. X.; Yue, R. R.; Du, Y.; Yang, P.; Xu, J. One-pot synthesis of a rGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J. Mater. Chem. A 2013, 1, 7255-7261.

29

Guo, D. J.; Jing, Z. H. A novel co-precipitation method for preparation of Pt-CeO2 composites on multi-walled carbon nanotubes for direct methanol fuel cells. J. Power Sources 2010, 195, 3802-3805.

30

Scibioh, M. A.; Kim, S. K.; Cho, E. A.; Lim, T. H.; Hong, S. A.; Ha, H. Y. Pt-CeO2/C anode catalyst for direct methanol fuel cells. Appl. Catal., B-Environ. 2008, 84, 773-782.

31

Lee, K. S.; Park, I. S.; Cho, Y. H.; Jung, D. S.; Jung, N.; Park, H. Y.; Sung, Y. E. Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 2008, 258, 143-152.

32

Cao, L.; Scheiba, F.; Roth, C.; Schweiger, F.; Cremers, C.; Stimming, U.; Fuess, H.; Chen, L. Q.; Zhu, W. T.; Qiu, X. P. Novel nanocomposite Pt/RuO2·xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew. Chem., Int. Ed. 2006, 45, 5315-5319.

33

Saida, T.; Sugimoto, W.; Takasu, Y. Enhanced activity and stability of Pt/C fuel cell anodes by the modification with ruthenium-oxide nanosheets. Electrochim. Acta 2010, 55, 857-864.

34

Pietron, J. J.; Pomfret, M. B.; Chervin, C. N.; Long, J. W.; Rolison, D. R. Direct methanol oxidation at low overpotentials using Pt nanoparticles electrodeposited at ultrathin conductive RuO2 nanoskins. J. Mater. Chem. 2012, 22, 5197-5204.

35

Li, W.; Bai, Y.; Li, F. J.; Liu, C.; Chan, K. Y.; Feng, X.; Lu, X. H. Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol. J. Mater. Chem. 2012, 22, 4025-4031.

36

Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

37

Lu, S. Q.; Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2017, 139, 5156-5163.

38

Liu, Z. F.; Shamsuzzoha, M.; Ada, E. T.; Reichert, W. M.; Nikles, D. E. Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts. J. Power Sources 2007, 164, 472-480.

39

Ahrenstorf, K.; Albrecht, O.; Heller, H.; Kornowski, A.; Görlitz, D.; Weller, H. Colloidal synthesis of NixPt1-x nanoparticles with tuneable composition and size. Small 2007, 3, 271-274.

40

Wang, C.; Chi, M. F.; Wang, G. F.; van der Vliet, D.; Li, D. G.; More, K.; Wang, H. H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv. Funct. Mater. 2011, 21, 147-152.

41

Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; van der Vliet, D.; Wang, G. F.; Komanicky, V.; Chang, K. C.; Paulikas, A. P.; Tripkovic, D. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396-14403.

42

Kim, H. J.; Choi, S. M.; Nam, S. H.; Seo, M. H.; Kim, W. B. Carbon-supported PtNi catalysts for electrooxidation of cyclohexane to benzene over polymer electrolyte fuel cells. Catal. Today 2009, 146, 9-14.

43

Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J. Catal. 1995, 154, 98-106.

44

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

45

Diao, W. J.; Tengco, J. M. M.; Regalbuto, J. R.; Monnier, J. R. Preparation and characterization of Pt-Ru bimetallic catalysts synthesized by electroless deposition methods. ACS Catal. 2015, 5, 5123-5134.

46

Scofield, M. E.; Zhou, Y. C.; Yue, S. Y.; Wang, L.; Su, D.; Tong, X.; Vukmirovic, M. B.; Adzic, R. R.; Wong, S. S. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions. ACS Catal. 2016, 6, 3895-3908.

47

He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

48

Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs. alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529-B1536.

File
12274_2017_1822_MOESM1_ESM.pdf (496.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 August 2017
Revised: 19 August 2017
Accepted: 22 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0206500), the National Natural Science Foundation of China (No. 21671014), State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (No. oic-201503003) and the Fundamental Research Funds for the Central Universities (No. buctrc201522).

Return